Fir
fir
The Fortran IR (FIR) dialect that is used by Flang.
This is used in two ways, firstly it is mixed with HLFIR, and this FIR+HLFIR is the first MLIR representation of a Fortran code in the compilation pipeline. Secondly, the HLFIR+FIR is then lowered to FIR only, before this is then lowered to LLVM IR.
See external documentation.
FIR = Dialect('fir', [AbsentOp, AddcOp, AddressOfOp, AllocmemOp, AllocaOp, ArrayAccessOp, ArrayAmendOp, ArrayCoorOp, ArrayFetchOp, ArrayLoadOp, ArrayMergeStoreOp, ArrayModifyOp, ArrayUpdateOp, BoxAddrOp, BoxcharLenOp, BoxDimsOp, BoxElesizeOp, BoxIsallocOp, BoxIsarrayOp, BoxIsptrOp, BoxOffsetOp, BoxprocHostOp, BoxRankOp, BoxTdescOp, CallOp, CharConvertOp, CmpcOp, ConstcOp, ConvertOp, CoordinateOfOp, DeclareOp, DtEntryOp, DispatchOp, DispatchTableOp, DivcOp, DoLoopOp, DummyScopeOp, EmboxcharOp, EmboxOp, EmboxprocOp, ExtractValueOp, FieldIndexOp, EndOp, FreememOp, GentypedescOp, GlobalLenOp, GlobalOp, HasValueOp, IfOp, InsertOnRangeOp, InsertValueOp, IsPresentOp, IterateWhileOp, LenParamIndexOp, LoadOp, MulcOp, NegcOp, NoReassocOp, ReboxOp, ResultOp, SaveResultOp, SelectCaseOp, SelectOp, SelectRankOp, SelectTypeOp, ShapeOp, ShapeShiftOp, ShiftOp, SliceOp, StoreOp, StringLitOp, SubcOp, UnboxcharOp, UnboxprocOp, UndefinedOp, UnreachableOp, ZeroBitsOp], [FortranVariableFlagsAttr, ReferenceType, DeferredAttr, DummyScopeType, LLVMPointerType, PointerType, LogicalType, NoneType, SequenceType, CharacterType, ShapeType, ShapeShiftType, HeapType, BoxType, BoxCharType, ShiftType, ComplexType])
module-attribute
FortranVariableFlags
Bases: Enum
Source code in xdsl/dialects/experimental/fir.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | |
NOATTRIBUTES = 'None'
class-attribute
instance-attribute
ALLOCATABLE = 'allocatable'
class-attribute
instance-attribute
ASYNCHRONOUS = 'asynchronous'
class-attribute
instance-attribute
BIND_C = 'bind_c'
class-attribute
instance-attribute
CONTIGUOUS = 'contiguous'
class-attribute
instance-attribute
INTENT_IN = 'intent_in'
class-attribute
instance-attribute
INTENT_INOUT = 'intent_inout'
class-attribute
instance-attribute
INTENT_OUT = 'intent_out'
class-attribute
instance-attribute
OPTIONAL = 'optional'
class-attribute
instance-attribute
PARAMETER = 'parameter'
class-attribute
instance-attribute
POINTER = 'pointer'
class-attribute
instance-attribute
TARGET = 'target'
class-attribute
instance-attribute
VALUE = 'value'
class-attribute
instance-attribute
VOLATILE = 'volatile'
class-attribute
instance-attribute
HOSTASSOC = 'host_assoc'
class-attribute
instance-attribute
INTERNALASSOC = 'internal_assoc'
class-attribute
instance-attribute
try_parse(parser: AttrParser) -> set[FortranVariableFlags] | None
staticmethod
Source code in xdsl/dialects/experimental/fir.py
80 81 82 83 84 85 86 | |
FortranVariableFlagsAttrBase
dataclass
Bases: Data[tuple[FortranVariableFlags, ...]]
Source code in xdsl/dialects/experimental/fir.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | |
flags: set[FortranVariableFlags]
property
Returns a copy of the Fortran variable flags.
__init__(flags: Sequence[FortranVariableFlags])
Source code in xdsl/dialects/experimental/fir.py
98 99 100 101 | |
parse_parameter(parser: AttrParser) -> tuple[FortranVariableFlags, ...]
classmethod
Source code in xdsl/dialects/experimental/fir.py
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | |
print_parameter(printer: Printer)
Source code in xdsl/dialects/experimental/fir.py
119 120 121 122 123 124 125 126 127 | |
FortranVariableFlagsAttr
dataclass
Bases: FortranVariableFlagsAttrBase
Source code in xdsl/dialects/experimental/fir.py
130 131 132 | |
name = 'fir.var_attrs'
class-attribute
instance-attribute
ReferenceType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
The type of a reference to an entity in memory.
Source code in xdsl/dialects/experimental/fir.py
135 136 137 138 139 140 141 142 | |
name = 'fir.ref'
class-attribute
instance-attribute
type: Attribute
instance-attribute
DeferredAttr
dataclass
Bases: ParametrizedAttribute, TypeAttribute
A deferred size which is represented with a question mark
Source code in xdsl/dialects/experimental/fir.py
145 146 147 148 149 150 151 152 153 154 | |
name = 'fir.deferred'
class-attribute
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
153 154 | |
DummyScopeType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
fir.dscope is a type returned by fir.dummy_scope operation. It defines a unique identifier for a runtime instance of a subroutine that is used by the [hl]fir.declare operations representing the dummy arguments' declarations.
Source code in xdsl/dialects/experimental/fir.py
157 158 159 160 161 162 163 164 165 166 | |
name = 'fir.dscope'
class-attribute
instance-attribute
LLVMPointerType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
A pointer type that does not have any of the constraints and semantics of other FIR pointer types and that translates to llvm pointer types. It is meant to implement indirection that cannot be expressed directly in Fortran, but are needed to implement some Fortran features (e.g, double indirections).
Source code in xdsl/dialects/experimental/fir.py
169 170 171 172 173 174 175 176 177 178 179 180 181 | |
name = 'fir.llvm_ptr'
class-attribute
instance-attribute
type: Attribute
instance-attribute
PointerType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
The type of entities with the POINTER attribute. These pointers are explicitly distinguished to disallow the composition of multiple levels of indirection. For example, an ALLOCATABLE POINTER is invalid.
Source code in xdsl/dialects/experimental/fir.py
184 185 186 187 188 189 190 191 192 193 194 | |
name = 'fir.ptr'
class-attribute
instance-attribute
type: Attribute
instance-attribute
NoneType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
This isn't part of the FIR MLIR dialect, and is only represented internally with xDSL, but is useful to denote when there is a none or empty attribute
Source code in xdsl/dialects/experimental/fir.py
197 198 199 200 201 202 203 204 | |
name = 'fir.none'
class-attribute
instance-attribute
SequenceType
Bases: ParametrizedAttribute, TypeAttribute
A sequence type is a multi-dimensional array of values. The sequence type may have an unknown number of dimensions or the extent of dimensions may be unknown. A sequence type models a Fortran array entity, giving it a type in FIR. A sequence type is assumed to be stored in a column-major order, which differs from LLVM IR and other dialects of MLIR.
Source code in xdsl/dialects/experimental/fir.py
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 | |
name = 'fir.array'
class-attribute
instance-attribute
shape: ArrayAttr[IntegerAttr | DeferredAttr | NoneType]
instance-attribute
type: Attribute
instance-attribute
type2: Attribute
instance-attribute
__init__(type1: IntegerType | AnyFloat | ReferenceType, shape: list[int | IntegerAttr[IndexType] | DeferredAttr] | None = None, type2: IntegerType | AnyFloat | ReferenceType | None = None)
Source code in xdsl/dialects/experimental/fir.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | |
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 | |
hasDeferredShape()
Source code in xdsl/dialects/experimental/fir.py
296 297 298 299 300 | |
getNumberDims()
Source code in xdsl/dialects/experimental/fir.py
302 303 | |
CharacterType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Model of the Fortran CHARACTER intrinsic type, including the KIND type parameter. The model optionally includes a LEN type parameter. A CharacterType is thus the type of both a single character value and a character with a LEN parameter.
Source code in xdsl/dialects/experimental/fir.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | |
name = 'fir.char'
class-attribute
instance-attribute
from_index: IntAttr | DeferredAttr
instance-attribute
to_index: IntAttr | DeferredAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
320 321 322 323 324 325 326 327 328 329 330 331 332 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | |
LogicalType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Model of a Fortran LOGICAL intrinsic type, including the KIND type parameter
Source code in xdsl/dialects/experimental/fir.py
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 | |
name = 'fir.logical'
class-attribute
instance-attribute
size: IntAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
364 365 366 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
368 369 370 371 372 373 | |
ComplexType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Model of a Fortran COMPLEX intrinsic type, including the KIND type parameter. COMPLEX is a floating point type with a real and imaginary member.
Source code in xdsl/dialects/experimental/fir.py
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 | |
name = 'fir.complex'
class-attribute
instance-attribute
width: IntAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
388 389 390 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
392 393 394 395 396 397 | |
ShiftType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Type of a vector of runtime values that define the lower bounds of a multidimensional array object. The vector is the lower bounds of each array dimension. The rank of a ShiftType must be at least 1.
Source code in xdsl/dialects/experimental/fir.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 | |
name = 'fir.shift'
class-attribute
instance-attribute
indexes: IntAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
412 413 414 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
416 417 418 419 420 421 | |
ShapeType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Type of a vector of runtime values that define the shape of a multidimensional array object. The vector is the extents of each array dimension. The rank of a ShapeType must be at least 1.
Source code in xdsl/dialects/experimental/fir.py
424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 | |
name = 'fir.shape'
class-attribute
instance-attribute
indexes: IntAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
436 437 438 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
440 441 442 443 444 445 | |
ShapeShiftType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Type of a vector of runtime values that define the shape and the origin of a multidimensional array object. The vector is of pairs, origin offset and extent, of each array dimension. The rank of a ShapeShiftType must be at least 1.
Source code in xdsl/dialects/experimental/fir.py
448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 | |
name = 'fir.shapeshift'
class-attribute
instance-attribute
indexes: IntAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
461 462 463 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
465 466 467 468 469 470 | |
HeapType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
The type of a heap pointer. Fortran entities with the ALLOCATABLE attribute may be allocated on the heap at runtime. These pointers are explicitly distinguished to disallow the composition of multiple levels of indirection. For example, an ALLOCATABLE POINTER is invalid.
Source code in xdsl/dialects/experimental/fir.py
473 474 475 476 477 478 479 480 481 482 483 484 | |
name = 'fir.heap'
class-attribute
instance-attribute
type: SequenceType | CharacterType
instance-attribute
BoxType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
Descriptors are tuples of information that describe an entity being passed from a calling context. This information might include (but is not limited to) whether the entity is an array, its size, or what type it has.
Source code in xdsl/dialects/experimental/fir.py
487 488 489 490 491 492 493 494 495 496 497 | |
name = 'fir.box'
class-attribute
instance-attribute
type: Attribute
instance-attribute
BoxCharType
dataclass
Bases: ParametrizedAttribute, TypeAttribute
The type of a pair that describes a CHARACTER variable. Specifically, a CHARACTER consists of a reference to a buffer (the string value) and a LEN type parameter (the runtime length of the buffer).
Source code in xdsl/dialects/experimental/fir.py
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 | |
name = 'fir.boxchar'
class-attribute
instance-attribute
kind: IntAttr
instance-attribute
print_parameters(printer: Printer) -> None
Source code in xdsl/dialects/experimental/fir.py
512 513 514 | |
parse_parameters(parser: AttrParser) -> list[Attribute]
classmethod
Source code in xdsl/dialects/experimental/fir.py
516 517 518 519 520 521 | |
AbsentOp
dataclass
Bases: IRDLOperation
Given the type of a function argument, create a value that will signal that an optional argument is absent in the call. On the caller side, fir.is_present can be used to query if the value of an optional argument was created with a fir.absent operation.
It is undefined to use a value that was created by a fir.absent op in any other operation than fir.call and fir.is_present.
%1 = fir.absent fir.box<fir.array<?xf32>> fir.call @_QPfoo(%1) : (fir.box<fir.array<?xf32>>) -> ()
Source code in xdsl/dialects/experimental/fir.py
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | |
name = 'fir.absent'
class-attribute
instance-attribute
intype = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
AddcOp
dataclass
Bases: IRDLOperation
Source code in xdsl/dialects/experimental/fir.py
544 545 546 547 548 549 550 551 | |
name = 'fir.addc'
class-attribute
instance-attribute
lhs = operand_def()
class-attribute
instance-attribute
rhs = operand_def()
class-attribute
instance-attribute
fastmath = opt_prop_def(FastMathFlagsAttr)
class-attribute
instance-attribute
result = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
AddressOfOp
dataclass
Bases: IRDLOperation
Convert a symbol (a function or global reference) to an SSA-value to be used in other operations. References to Fortran symbols are distinguished via this operation from other arbitrary constant values.
%p = fir.address_of(@symbol) : !fir.ref
Source code in xdsl/dialects/experimental/fir.py
554 555 556 557 558 559 560 561 562 563 564 565 566 567 | |
name = 'fir.address_of'
class-attribute
instance-attribute
symbol = prop_def(SymbolRefAttr)
class-attribute
instance-attribute
resTy = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
AllocmemOp
dataclass
Bases: IRDLOperation
Creates a heap memory reference suitable for storing a value of the
given type, T. The heap refernce returned has type !fir.heap<T>.
The memory object is in an undefined state. allocmem operations must
be paired with freemem operations to avoid memory leaks.
%0 = fir.allocmem !fir.array<10 x f32> fir.freemem %0 : !fir.heap<!fir.array<10 x f32>>
Source code in xdsl/dialects/experimental/fir.py
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 | |
name = 'fir.allocmem'
class-attribute
instance-attribute
in_type = prop_def()
class-attribute
instance-attribute
uniq_name = opt_prop_def(StringAttr)
class-attribute
instance-attribute
bindc_name = opt_prop_def(StringAttr)
class-attribute
instance-attribute
typeparams = var_operand_def()
class-attribute
instance-attribute
shape = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
AllocaOp
dataclass
Bases: IRDLOperation
This primitive operation is used to allocate an object on the stack. A
reference to the object of type '!fir.ref
%c = ... : i64
%x = fir.alloca i32
%y = fir.alloca !fir.array<8 x i64>
%z = fir.alloca f32, %c
%i = ... : i16
%j = ... : i32
%w = fir.alloca !fir.type<PT(len1:i16, len2:i32)> (%i, %j : i16, i32)
Note that in the case of '%z', a contiguous block of memory is allocated and its size is a runtime multiple of a 32-bit REAL value.
In the case of '%w', the arguments '%i' and '%j' are LEN parameters ('len1', 'len2') to the type 'PT'.
Finally, the operation is undefined if the ssa-value '%c' is negative.
Fortran Semantics: There is no language mechanism in Fortran to allocate space on the stack like C's 'alloca()' function. Therefore fir.alloca is not control-flow dependent. However, the lifetime of a stack allocation is often limited to a small region and a legal implementation may reuse stack storage in other regions when there is no conflict. For example, take the following code fragment.
CALL foo(1) CALL foo(2) CALL foo(3)
A legal implementation can allocate a stack slot and initialize it with the constant '1', then pass that by reference to foo. Likewise for the second and third calls to foo, each stack slot being initialized accordingly. It is also a conforming implementation to reuse the same stack slot for all three calls, just initializing each in turn. This is possible as the lifetime of the copy of each constant need not exceed that of the CALL statement. Indeed, a user would likely expect a good Fortran compiler to perform such an optimization.
Until Fortran 2018, procedures defaulted to non-recursive. A legal implementation could therefore convert stack allocations to global allocations. Such a conversion effectively adds the SAVE attribute to all variables.
Some temporary entities (large arrays) probably should not be stack allocated as stack space can often be limited. A legal implementation can convert these large stack allocations to heap allocations regardless of whether the procedure is recursive or not.
The pinned attribute is used to flag fir.alloca operation in a specific region and avoid them being hoisted in an alloca hoisting pass.
Source code in xdsl/dialects/experimental/fir.py
595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 | |
name = 'fir.alloca'
class-attribute
instance-attribute
in_type = prop_def()
class-attribute
instance-attribute
uniq_name = opt_prop_def(StringAttr)
class-attribute
instance-attribute
bindc_name = opt_prop_def(StringAttr)
class-attribute
instance-attribute
typeparams = var_operand_def()
class-attribute
instance-attribute
shape = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
valuebyref = opt_prop_def(UnitAttr)
class-attribute
instance-attribute
pinned = opt_prop_def(UnitAttr)
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
ArrayAccessOp
dataclass
Bases: IRDLOperation
The 'array_access' provides a reference to a single element from an array value. This is not a view in the immutable array, otherwise it couldn't be stored to. It can be see as a logical copy of the element and its position in the array. This reference can be written to and modified without changing the original array.
The 'array_access' operation is used to fetch the memory reference of an element in an array value.
real :: a(n,m) ... ... a ... ... a(r,s+1) ...
One can use 'fir.array_access' to recover the implied memory reference to the element 'a(i,j)' in an array expression 'a' as shown above. It can also be used to recover the reference element 'a(r,s+1)' in the second expression.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2>
// load the entire array 'a'
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32>
// fetch the value of one of the array value's elements
%1 = fir.array_access %v, %i, %j : (!fir.array<?x?xf32>, index, index) -> !fir.ref
It is only possible to use 'array_access' on an 'array_load' result value or a value that can be trace back transitively to an 'array_load' as the dominating source. Other array operation such as 'array_amend' can be in between.
TODO: The above restriction is not enforced. The design of the operation might need to be revisited to avoid such restrictions.
More information about 'array_access' and other array operations can be found in Flang documentation at flang/docs/FIRArrayOperations.md.
Source code in xdsl/dialects/experimental/fir.py
672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 | |
name = 'fir.array_access'
class-attribute
instance-attribute
sequence = operand_def()
class-attribute
instance-attribute
indices = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
element = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayAmendOp
dataclass
Bases: IRDLOperation
The 'array_amend' operation marks an array value as having been changed via
a reference obtained by an array_access. It acts as a logical transaction
log that is used to merge the final result back with an array_merge_store
operation.
// fetch the value of one of the array value's elements
%1 = fir.array_access %v, %i, %j : (!fir.array<?x?xT>, index, index) -> !fir.ref
More information about array_amend and other array operations can be
found in Flang documentation at flang/docs/FIRArrayOperations.md.
Source code in xdsl/dialects/experimental/fir.py
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | |
name = 'fir.array_amend'
class-attribute
instance-attribute
sequence = operand_def()
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayCoorOp
dataclass
Bases: IRDLOperation
Compute the location of an element in an array when the shape of the array is only known at runtime.
This operation is intended to capture all the runtime values needed to compute the address of an array reference in a single high-level op. Given the following Fortran input:
real :: a(n,m) ... ... a(i,j) ...
One can use 'fir.array_coor' to determine the address of 'a(i,j)'.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2>
%1 = fir.array_coor %a(%s) %i, %j : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>, index, index) -> !fir.ref
Source code in xdsl/dialects/experimental/fir.py
746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | |
name = 'fir.array_coor'
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
shape = operand_def()
class-attribute
instance-attribute
slice = operand_def()
class-attribute
instance-attribute
indices = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayFetchOp
dataclass
Bases: IRDLOperation
Fetch the value of an element in an array value.
real :: a(n,m) ... ... a ... ... a(r,s+1) ...
One can use 'fir.array_fetch' to fetch the (implied) value of 'a(i,j)' in an array expression as shown above. It can also be used to extract the element 'a(r,s+1)' in the second expression.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2> // load the entire array 'a' %v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32> // fetch the value of one of the array value's elements %1 = fir.array_fetch %v, %i, %j : (!fir.array<?x?xf32>, index, index) -> f32
It is only possible to use 'array_fetch' on an 'array_load' result value.
Source code in xdsl/dialects/experimental/fir.py
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 | |
name = 'fir.array_fetch'
class-attribute
instance-attribute
sequence = operand_def()
class-attribute
instance-attribute
indices = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
element = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayLoadOp
dataclass
Bases: IRDLOperation
This operation taken with array_merge_store captures Fortran's copy-in/copy-out semantics. One way to think of this is that array_load creates a snapshot copy of the entire array. This copy can then be used as the "original value" of the array while the array's new value is computed. The array_merge_store operation is the copy-out semantics, which merge the updates with the original array value to produce the final array result. This abstracts the copy operations as opposed to always creating copies or requiring dependence analysis be performed on the syntax trees and before lowering to the IR.
Load an entire array as a single SSA value.
real :: a(o:n,p:m) ... ... = ... a ...
One can use 'fir.array_load' to produce an ssa-value that captures an
immutable value of the entire array a, as in the Fortran array expression
shown above. Subsequent changes to the memory containing the array do not
alter its composite value. This operation lets one load an array as a
value while applying a runtime shape, shift, or slice to the memory
reference, and its semantics guarantee immutability.
%s = fir.shape_shift %o, %n, %p, %m : (index, index, index, index) -> !fir.shapeshift<2> // load the entire array 'a' %v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shapeshift<2>) -> !fir.array<?x?xf32> // a fir.store here into array %a does not change %v
Source code in xdsl/dialects/experimental/fir.py
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 | |
name = 'fir.array_load'
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
shape = operand_def()
class-attribute
instance-attribute
slice = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayMergeStoreOp
dataclass
Bases: IRDLOperation
Store a merged array value to memory.
real :: a(n,m) ... a = ...
One can use 'fir.array_merge_store' to merge/copy the value of 'a' in an array expression as shown above.
%v = fir.array_load %a(%shape) : ... %r = fir.array_update %v, %f, %i, %j : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32> fir.array_merge_store %v, %r to %a : !fir.ref<!fir.array<?x?xf32>>
This operation merges the original loaded array value, '%v', with the chained updates, '%r', and stores the result to the array at address, '%a'.
Source code in xdsl/dialects/experimental/fir.py
848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 | |
name = 'fir.array_merge_store'
class-attribute
instance-attribute
original = operand_def()
class-attribute
instance-attribute
sequence = operand_def()
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
slice = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayModifyOp
dataclass
Bases: IRDLOperation
Modify the value of an element in an array value through actions done on the returned address. A new array value is also returned where all element values of the input array are identical except for the selected element which is the value after the modification done on the element address.
real :: a(n) ... ! Elemental user defined assignment from type(SomeType) to real. a = value_of_some_type
One can use 'fir.array_modify' to update the (implied) value of 'a(i)' in an array expression as shown above.
%s = fir.shape %n : (index) -> !fir.shape<1>
// Load the entire array 'a'.
%v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?xf32>>, !fir.shape<1>) -> !fir.array<?xf32>
// Update the value of one of the array value's elements with a user
// defined assignment from %rhs.
%new = fir.do_loop %i = ... (%inner = %v) {
%rhs = ...
%addr, %r = fir.array_modify %inner, %i : (!fir.array<?xf32>, index) -> (fir.ref
Source code in xdsl/dialects/experimental/fir.py
877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 | |
name = 'fir.array_modify'
class-attribute
instance-attribute
sequence = operand_def()
class-attribute
instance-attribute
indices = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
result_1 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ArrayUpdateOp
dataclass
Bases: IRDLOperation
Updates the value of an element in an array value. A new array value is returned where all element values of the input array are identical except for the selected element which is the value passed in the update.
real :: a(n,m) ... a = ...
One can use 'fir.array_update' to update the (implied) value of 'a(i,j)' in an array expression as shown above.
%s = fir.shape %n, %m : (index, index) -> !fir.shape<2> // load the entire array 'a' %v = fir.array_load %a(%s) : (!fir.ref<!fir.array<?x?xf32>>, !fir.shape<2>) -> !fir.array<?x?xf32> // update the value of one of the array value's elements // %r_{ij} = %f if (i,j) = (%i,%j), %v_{ij} otherwise %r = fir.array_update %v, %f, %i, %j : (!fir.array<?x?xf32>, f32, index, index) -> !fir.array<?x?xf32> fir.array_merge_store %v, %r to %a : !fir.ref<!fir.array<?x?xf32>>
An array value update behaves as if a mapping function from the indices to the new value has been added, replacing the previous mapping. These mappings can be added to the ssa-value, but will not be materialized in memory until the 'fir.array_merge_store' is performed.
Source code in xdsl/dialects/experimental/fir.py
917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 | |
name = 'fir.array_update'
class-attribute
instance-attribute
sequence = operand_def()
class-attribute
instance-attribute
merge = operand_def()
class-attribute
instance-attribute
indices = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxAddrOp
dataclass
Bases: IRDLOperation
This operator is overloaded to work with values of type 'box', 'boxchar', and 'boxproc'. The result for each of these cases, respectively, is the address of the data, the address of the 'CHARACTER' data, and the address of the procedure.
%51 = fir.box_addr %box : (!fir.box
Source code in xdsl/dialects/experimental/fir.py
954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 | |
name = 'fir.box_addr'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxcharLenOp
dataclass
Bases: IRDLOperation
Extracts the LEN type parameter from a 'boxchar' value.
%45 = ... : !boxchar<1> // CHARACTER(20) %59 = fir.boxchar_len %45 : (!fir.boxchar<1>) -> i64 // len=20
Source code in xdsl/dialects/experimental/fir.py
973 974 975 976 977 978 979 980 981 982 983 984 985 | |
name = 'fir.boxchar_len'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxDimsOp
dataclass
Bases: IRDLOperation
Returns the triple of lower bound, extent, and stride for 'dim' dimension of 'val', which must have a 'box' type. The dimensions are enumerated from left to right from 0 to rank-1. This operation has undefined behavior if 'dim' is out of bounds.
%c1 = arith.constant 0 : i32 %52:3 = fir.box_dims %40, %c1 : (!fir.box<!fir.array<*:f64>>, i32) -> (index, index, index)
The above is a request to return the left most row (at index 0) triple from the box. The triple will be the lower bound, extent, and byte-stride, which are the values encoded in a standard descriptor.
Source code in xdsl/dialects/experimental/fir.py
988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 | |
name = 'fir.box_dims'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
dim = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
result_1 = result_def()
class-attribute
instance-attribute
result_2 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxElesizeOp
dataclass
Bases: IRDLOperation
Returns the size of an element in an entity of 'box' type. This size may not be known until runtime.
%53 = fir.box_elesize %40 : (!fir.box
In the above example, '%53' may box an array of REAL values while '%54' must box an array of REAL values (with dynamic rank and extent).
Source code in xdsl/dialects/experimental/fir.py
1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 | |
name = 'fir.box_elesize'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxIsallocOp
dataclass
Bases: IRDLOperation
Determine if the boxed value was from an ALLOCATABLE entity. This will
return true if the originating box value was from a 'fir.embox' op
with a mem-ref value that had the type !fir.heap
%r = ... : !fir.heap
The canonical descriptor implementation will carry a flag to record if the variable is an 'ALLOCATABLE'.
Source code in xdsl/dialects/experimental/fir.py
1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 | |
name = 'fir.box_isalloc'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxIsarrayOp
dataclass
Bases: IRDLOperation
Determine if the boxed value has a positive (> 0) rank. This will return
true if the originating box value was from a fir.embox with a memory
reference value that had the type !fir.array
%r = ... : !fir.ref
Source code in xdsl/dialects/experimental/fir.py
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 | |
name = 'fir.box_isarray'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxIsptrOp
dataclass
Bases: IRDLOperation
Determine if the boxed value was from a POINTER entity.
%p = ... : !fir.ptr
Source code in xdsl/dialects/experimental/fir.py
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 | |
name = 'fir.box_isptr'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxOffsetOp
dataclass
Bases: IRDLOperation
Given the address of a fir.box, compute the address of a field inside the fir.box. This allows keeping the actual runtime descriptor layout abstract in FIR while providing access to the pointer addresses in the runtime descriptor for OpenMP/OpenACC target mapping.
To avoid requiring too much information about the fields that the runtime descriptor implementation must have, only the base_addr and derived_type descriptor fields can be addressed.
%addr = fir.box_offset %box base_addr : (!fir.ref<!fir.box<!fir.array<?xi32>>>) -> !fir.llvm_ptr<!fir.ref<!fir.array<?xi32>>>
%tdesc = fir.box_offset %box derived_type : (!fir.ref<!fir.box<!fir.type
Source code in xdsl/dialects/experimental/fir.py
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 | |
name = 'fir.box_offset'
class-attribute
instance-attribute
field = prop_def()
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
BoxprocHostOp
dataclass
Bases: IRDLOperation
Extract the host context pointer from a boxproc value.
%8 = ... : !fir.boxproc<(!fir.ref<!fir.type
In the example, the reference to the closure over the host procedure's variables is returned. This allows an internal procedure to access the host's variables. It is up to lowering to determine the contract between the host and the internal procedure.
Source code in xdsl/dialects/experimental/fir.py
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 | |
name = 'fir.boxproc_host'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxRankOp
dataclass
Bases: IRDLOperation
Return the rank of a value of 'box' type. If the value is scalar, the rank is 0.
%57 = fir.box_rank %40 : (!fir.box<!fir.array<*:f64>>) -> i32
%58 = fir.box_rank %41 : (!fir.box
The example '%57' shows how one would determine the rank of an array that has deferred rank at runtime. This rank should be at least 1. In %58, the descriptor may be either an array or a scalar, so the value is nonnegative.
Source code in xdsl/dialects/experimental/fir.py
1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 | |
name = 'fir.box_rank'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
BoxTdescOp
dataclass
Bases: IRDLOperation
Return the opaque type descriptor of a value of 'box' type. A type descriptor is an implementation defined value that fully describes a type to the Fortran runtime.
%7 = fir.box_tdesc %41 : (!fir.box
Source code in xdsl/dialects/experimental/fir.py
1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 | |
name = 'fir.box_tdesc'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
CallOp
dataclass
Bases: IRDLOperation
Call the specified function or function reference.
%a = fir.call %funcref(%arg0) : (!fir.ref
Source code in xdsl/dialects/experimental/fir.py
1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 | |
name = 'fir.call'
class-attribute
instance-attribute
callee = prop_def()
class-attribute
instance-attribute
fastmath = opt_prop_def(FastMathFlagsAttr)
class-attribute
instance-attribute
result_0 = opt_result_def()
class-attribute
instance-attribute
args = var_operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
CharConvertOp
dataclass
Bases: IRDLOperation
Copy a CHARACTER (must be in memory) of KIND k1 to a CHARACTER (also must be in memory) of KIND k2 where k1 != k2 and the buffers do not overlap. This latter restriction is unchecked, as the Fortran language definition eliminates the overlapping in memory case.
The number of code points copied is specified explicitly as the second argument. The length of the !fir.char type is ignored.
fir.char_convert %1 for %2 to %3 : !fir.ref<!fir.char<1,?>>, i32, !fir.ref<!fir.char<2,20>>
Should future support for encodings other than ASCII be supported, codegen can generate a call to a runtime helper routine which will map the code points from UTF-8 to UCS-2, for example. Such remappings may not always be possible as they may involve the creation of more code points than the 'count' limit. These details are left as future to-dos.
Source code in xdsl/dialects/experimental/fir.py
1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 | |
name = 'fir.char_convert'
class-attribute
instance-attribute
count = operand_def()
class-attribute
instance-attribute
to = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
CmpcOp
dataclass
Bases: IRDLOperation
A complex comparison to handle complex types found in FIR.
Source code in xdsl/dialects/experimental/fir.py
1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 | |
name = 'fir.cmpc'
class-attribute
instance-attribute
lhs = operand_def()
class-attribute
instance-attribute
rhs = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ConstcOp
dataclass
Bases: IRDLOperation
A complex constant. Similar to the standard dialect complex type, but this extension allows constants with APFloat values that are not supported in the standard dialect.
Source code in xdsl/dialects/experimental/fir.py
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 | |
name = 'fir.constc'
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ConvertOp
dataclass
Bases: IRDLOperation
Generalized type conversion. Convert the ssa-value from type T to type U. Not all pairs of types have conversions. When types T and U are the same type, this instruction is a NOP and may be folded away. This also supports integer to pointer conversion and pointer to integer conversion.
%v = ... : i64 %w = fir.convert %v : (i64) -> i32
The example truncates the value '%v' from an i64 to an i32.
Source code in xdsl/dialects/experimental/fir.py
1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 | |
name = 'fir.convert'
class-attribute
instance-attribute
value = operand_def()
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
CoordinateOfOp
dataclass
Bases: IRDLOperation
Compute the internal coordinate address starting from a boxed value or unboxed memory reference. Returns a memory reference. When computing the coordinate of an array element, the rank of the array must be known and the number of indexing expressions must not exceed the rank of the array.
This operation will apply the access map from a boxed value implicitly.
Unlike LLVM's GEP instruction, one cannot stride over the outermost reference; therefore, the leading 0 index must be omitted.
%i = ... : index
%h = ... : !fir.heap<!fir.array<100 x f32>>
%p = fir.coordinate_of %h, %i : (!fir.heap<!fir.array<100 x f32>>, index) -> !fir.ref
In the example, '%p' will be a pointer to the '%i'-th f32 value in the array '%h'.
Source code in xdsl/dialects/experimental/fir.py
1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 | |
name = 'fir.coordinate_of'
class-attribute
instance-attribute
baseType = prop_def()
class-attribute
instance-attribute
ref = operand_def()
class-attribute
instance-attribute
coor = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
DeclareOp
dataclass
Bases: IRDLOperation
Tie the properties of a Fortran variable to an address. The properties include bounds, length parameters, and Fortran attributes.
The memref argument describes the storage of the variable. It may be a
raw address (fir.ref
The shape argument encodes explicit extents and lower bounds. It must be provided if the memref is the raw address of an array. The shape argument must not be provided if memref operand is a box or class value or address, unless the shape is a shift (encodes lower bounds) and the memref if a box value (this covers assumed shapes with local lower bounds).
The typeparams values are meant to carry the non-deferred length parameters (this includes both Fortran assumed and explicit length parameters). It must always be provided for characters and parametrized derived types when memref is not a box value or address.
Example:
CHARACTER(n), OPTIONAL, TARGET :: c(10:, 20:)
Can be represented as:
func.func @foo(%arg0: !fir.box<!fir.array>>, %arg1: !fir.ref
Source code in xdsl/dialects/experimental/fir.py
1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 | |
name = 'fir.declare'
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
shape = operand_def()
class-attribute
instance-attribute
typeparams = var_operand_def()
class-attribute
instance-attribute
uniq_name = prop_def(StringAttr)
class-attribute
instance-attribute
fortran_attrs = opt_prop_def(FortranVariableFlagsAttr)
class-attribute
instance-attribute
DtEntryOp
dataclass
Bases: IRDLOperation
An entry in a dispatch table. Allows a function symbol to be bound to a specifier method identifier. A dispatch operation uses the dynamic type of a distinguished argument to determine an exact dispatch table and uses the method identifier to select the type-bound procedure to be called.
fir.dt_entry method_name, @uniquedProcedure
Source code in xdsl/dialects/experimental/fir.py
1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 | |
name = 'fir.dt_entry'
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
DispatchOp
dataclass
Bases: IRDLOperation
Perform a dynamic dispatch on the method name via the dispatch table associated with the first operand. The attribute 'pass_arg_pos' can be used to select a dispatch operand other than the first one. The absence of 'pass_arg_pos' attribute means nopass.
// fir.dispatch with no attribute.
%r = fir.dispatch "methodA"(%o) : (!fir.class
// fir.dispatch with the pass_arg_pos attribute.
%r = fir.dispatch "methodA"(%o : !fir.class
Source code in xdsl/dialects/experimental/fir.py
1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 | |
name = 'fir.dispatch'
class-attribute
instance-attribute
pass_arg_pos = opt_prop_def(IntegerAttr)
class-attribute
instance-attribute
object = operand_def()
class-attribute
instance-attribute
args = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
DispatchTableOp
dataclass
Bases: IRDLOperation
Define a dispatch table for a derived type with type-bound procedures.
A dispatch table is an untyped symbol that contains a list of associations between method identifiers and corresponding 'FuncOp' symbols.
The ordering of associations in the map is determined by the front end.
fir.dispatch_table @_QDTMquuzTfoo { fir.dt_entry method1, @_QFNMquuzTfooPmethod1AfooR fir.dt_entry method2, @_QFNMquuzTfooPmethod2AfooII }
Source code in xdsl/dialects/experimental/fir.py
1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 | |
name = 'fir.dispatch_table'
class-attribute
instance-attribute
sym_name = prop_def(SymbolNameConstraint())
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
traits = traits_def(SymbolOpInterface())
class-attribute
instance-attribute
DivcOp
dataclass
Bases: IRDLOperation
Source code in xdsl/dialects/experimental/fir.py
1396 1397 1398 1399 1400 1401 1402 1403 | |
name = 'fir.divc'
class-attribute
instance-attribute
lhs = operand_def()
class-attribute
instance-attribute
rhs = operand_def()
class-attribute
instance-attribute
fastmath = opt_prop_def(FastMathFlagsAttr)
class-attribute
instance-attribute
result = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
DoLoopOp
dataclass
Bases: IRDLOperation
Generalized high-level looping construct. This operation is similar to MLIR's 'scf.for'.
%l = arith.constant 0 : index
%u = arith.constant 9 : index
%s = arith.constant 1 : index
fir.do_loop %i = %l to %u step %s unordered {
%x = fir.convert %i : (index) -> i32
%v = fir.call @compute(%x) : (i32) -> f32
%p = fir.coordinate_of %A, %i : (!fir.ref<!fir.array<?xf32>>, index) -> !fir.ref
The above example iterates over the interval '[%l, %u]'. The unordered keyword indicates that the iterations can be executed in any order.
Source code in xdsl/dialects/experimental/fir.py
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 | |
name = 'fir.do_loop'
class-attribute
instance-attribute
lowerBound = operand_def()
class-attribute
instance-attribute
upperBound = operand_def()
class-attribute
instance-attribute
step = operand_def()
class-attribute
instance-attribute
reduceOperands = var_operand_def()
class-attribute
instance-attribute
finalValue = opt_prop_def()
class-attribute
instance-attribute
initArgs = opt_operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
DummyScopeOp
dataclass
Bases: IRDLOperation
An abstract handle to be used to associate dummy arguments of the same subroutine between each other. By lowering, all [hl]fir.declare operations representing declarations of dummy arguments of a subroutine use the result of this operation. This allows recognizing the references of these dummy arguments as belonging to the same runtime instance of the subroutine even after MLIR inlining. Thus, the Fortran aliasing rules might be applied to those references based on the original declarations of the dummy arguments. For example: subroutine test(x, y) real, target :: x, y x = y ! may alias call inner(x, y) contains subroutine inner(x, y) real :: x, y x = y ! may not alias end subroutine inner end subroutine test
After MLIR inlining this may look like this:
func.func @_QPtest(
%arg0: !fir.ref
Without marking %3 and %4 as declaring the dummy arguments
of the same runtime instance of inner subroutine the FIR
AliasAnalysis cannot deduce non-aliasing for the second load/store pair.
This information may be preserved by using fir.dummy_scope operation:
func.func @_QPtest(
%arg0: !fir.ref
Note that even if inner is called and inlined twice inside
test, the two inlined instances of inner must use two different
fir.dummy_scope operations for their fir.declare ops. This
two distinct fir.dummy_scope must remain distinct during the optimizations.
This is guaranteed by the write memory effect on the DebuggingResource.
Source code in xdsl/dialects/experimental/fir.py
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 | |
name = 'fir.dummy_scope'
class-attribute
instance-attribute
result = result_def()
class-attribute
instance-attribute
EmboxcharOp
dataclass
Bases: IRDLOperation
Create a boxed CHARACTER value. The CHARACTER type has the LEN type parameter, the value of which may only be known at runtime. Therefore, a variable of type CHARACTER has both its data reference as well as a LEN type parameter.
CHARACTER(LEN=10) :: var
%4 = ... : !fir.ref<!fir.array<10 x !fir.char<1>>> %5 = arith.constant 10 : i32 %6 = fir.emboxchar %4, %5 : (!fir.ref<!fir.array<10 x !fir.char<1>>>, i32) -> !fir.boxchar<1>
In the above '%4' is a memory reference to a buffer of 10 CHARACTER units. This buffer and its LEN value (10) are wrapped into a pair in '%6'.
Source code in xdsl/dialects/experimental/fir.py
1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 | |
name = 'fir.emboxchar'
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
len = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
EmboxOp
dataclass
Bases: IRDLOperation
Create a boxed reference value. In Fortran, the implementation can require extra information about an entity, such as its type, rank, etc. This auxiliary information is packaged and abstracted as a value with box type by the calling routine. (In Fortran, these are called descriptors.)
%c1 = arith.constant 1 : index %c10 = arith.constant 10 : index %5 = ... : !fir.ref<!fir.array<10 x i32>> %6 = fir.embox %5 : (!fir.ref<!fir.array<10 x i32>>) -> !fir.box<!fir.array<10 x i32>>
The descriptor tuple may contain additional implementation-specific information through the use of additional attributes. Specifically, - shape: emboxing an array may require shape information (an array's lower bounds and extents may not be known until runtime), - slice: an array section can be described with a slice triple, - typeparams: for emboxing a derived type with LEN type parameters, - accessMap: unused/experimental.
Source code in xdsl/dialects/experimental/fir.py
1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 | |
name = 'fir.embox'
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
shape = var_operand_def()
class-attribute
instance-attribute
slice = var_operand_def()
class-attribute
instance-attribute
typeparams = var_operand_def()
class-attribute
instance-attribute
sourceBox = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
EmboxprocOp
dataclass
Bases: IRDLOperation
Creates an abstract encapsulation of a PROCEDURE POINTER along with an optional pointer to a host instance context. If the pointer is not to an internal procedure or the internal procedure does not need a host context then the form takes only the procedure's symbol.
%f = ... : (i32) -> i32 %0 = fir.emboxproc %f : ((i32) -> i32) -> !fir.boxproc<(i32) -> i32>
An internal procedure requiring a host instance for correct execution uses the second form. The closure of the host procedure's state is passed as a reference to a tuple. It is the responsibility of the host to manage the context's values accordingly, up to and including inhibiting register promotion of local values.
%4 = ... : !fir.ref<tuple<!fir.ref
Source code in xdsl/dialects/experimental/fir.py
1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 | |
name = 'fir.emboxproc'
class-attribute
instance-attribute
func = operand_def()
class-attribute
instance-attribute
host = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ExtractValueOp
dataclass
Bases: IRDLOperation
Extract a value from an entity with a type composed of tuples, arrays, and/or derived types. Returns the value from entity with the type of the specified component. Cannot be used on values of '!fir.box' type. It can also be used to access complex parts and elements of a character string.
Note that the entity ssa-value must be of compile-time known size in order to use this operation.
%f = fir.field_index field, !fir.type
Source code in xdsl/dialects/experimental/fir.py
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 | |
name = 'fir.extract_value'
class-attribute
instance-attribute
adt = operand_def()
class-attribute
instance-attribute
coor = opt_prop_def()
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
FieldIndexOp
dataclass
Bases: IRDLOperation
Generate a field (offset) value from an identifier. Field values may be lowered into exact offsets when the layout of a Fortran derived type is known at compile-time. The type of a field value is '!fir.field' and these values can be used with the 'fir.coordinate_of', 'fir.extract_value', or 'fir.insert_value' instructions to compute (abstract) addresses of subobjects.
%f = fir.field_index field, !fir.type
Source code in xdsl/dialects/experimental/fir.py
1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 | |
name = 'fir.field_index'
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
EndOp
dataclass
Bases: IRDLOperation
The end terminator is a special terminator used inside various FIR operations that have regions. End is thus the custom invisible terminator for these operations. It is implicit and need not appear in the textual representation.
Source code in xdsl/dialects/experimental/fir.py
1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 | |
name = 'fir.end'
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
traits = traits_def(IsTerminator())
class-attribute
instance-attribute
FreememOp
dataclass
Bases: IRDLOperation
Deallocates a heap memory reference that was allocated by an 'allocmem'. The memory object that is deallocated is placed in an undefined state after 'fir.freemem'. Optimizations may treat the loading of an object in the undefined state as undefined behavior. This includes aliasing references, such as the result of an 'fir.embox'.
%21 = fir.allocmem !fir.type
Source code in xdsl/dialects/experimental/fir.py
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 | |
name = 'fir.freemem'
class-attribute
instance-attribute
heapref = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
GentypedescOp
dataclass
Bases: IRDLOperation
Generates a constant object that is an abstract type descriptor of the
specified type. The meta-type of a type descriptor for the type 'T'
is '!fir.tdesc
!T = !fir.type
Source code in xdsl/dialects/experimental/fir.py
1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 | |
name = 'fir.gentypedesc'
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
GlobalLenOp
dataclass
Bases: IRDLOperation
A global entity (that is not an automatic data object) can have extra LEN parameter (compile-time) constants associated with the instance's type. These values can be bound to the global instance used 'fir.global_len'.
global @g : !fir.type
Source code in xdsl/dialects/experimental/fir.py
1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 | |
name = 'fir.global_len'
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
GlobalOp
dataclass
Bases: IRDLOperation
A global variable or constant with initial values.
The example creates a global variable (writable) named '@_QV_Mquark_Vvarble' with some initial values. The initializer should conform to the variable's type.
fir.global @_QV_Mquark_Vvarble : tuple
Source code in xdsl/dialects/experimental/fir.py
1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 | |
name = 'fir.global'
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
sym_name = prop_def(SymbolNameConstraint())
class-attribute
instance-attribute
symref = prop_def(SymbolRefAttr)
class-attribute
instance-attribute
type = prop_def()
class-attribute
instance-attribute
initVal = opt_prop_def()
class-attribute
instance-attribute
constant = opt_prop_def(UnitAttr)
class-attribute
instance-attribute
target = opt_prop_def(UnitAttr)
class-attribute
instance-attribute
linkName = opt_prop_def(StringAttr)
class-attribute
instance-attribute
data_attr = opt_prop_def()
class-attribute
instance-attribute
alignment = opt_prop_def(IntegerAttr)
class-attribute
instance-attribute
traits = traits_def(SymbolOpInterface())
class-attribute
instance-attribute
HasValueOp
dataclass
Bases: IRDLOperation
The terminator for a GlobalOp with a body.
global @variable : tuple
Source code in xdsl/dialects/experimental/fir.py
1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 | |
name = 'fir.has_value'
class-attribute
instance-attribute
resval = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
traits = traits_def(IsTerminator())
class-attribute
instance-attribute
IfOp
dataclass
Bases: IRDLOperation
Used to conditionally execute operations. This operation is the FIR dialect's version of 'loop.if'.
%56 = ... : i1 %78 = ... : !fir.ref<!T> fir.if %56 { fir.store %76 to %78 : !fir.ref<!T> } else { fir.store %77 to %78 : !fir.ref<!T> }
Source code in xdsl/dialects/experimental/fir.py
1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 | |
name = 'fir.if'
class-attribute
instance-attribute
condition = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
InsertOnRangeOp
dataclass
Bases: IRDLOperation
Insert copies of a value into an entity with an array type of constant shape and size. Returns a new ssa-value with the same type as the original entity. The values are inserted at a contiguous range of indices in Fortran row-to-column element order as specified by lower and upper bound coordinates.
%a = fir.undefined !fir.array<10x10xf32> %c = arith.constant 3.0 : f32 %1 = fir.insert_on_range %a, %c from (0, 0) to (7, 2) : (!fir.array<10x10xf32>, f32) -> !fir.array<10x10xf32>
The first 28 elements of %1, with coordinates from (0,0) to (7,2), have the value 3.0.
Source code in xdsl/dialects/experimental/fir.py
1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 | |
name = 'fir.insert_on_range'
class-attribute
instance-attribute
seq = operand_def()
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
InsertValueOp
dataclass
Bases: IRDLOperation
Insert a value into an entity with a type composed of tuples, arrays, and/or derived types. Returns a new ssa-value with the same type as the original entity. Cannot be used on values of '!fir.box' type. It can also be used to set complex parts and elements of a character string.
Note that the entity ssa-value must be of compile-time known size in order to use this operation.
%a = ... : !fir.array<10xtuple
Source code in xdsl/dialects/experimental/fir.py
1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 | |
name = 'fir.insert_value'
class-attribute
instance-attribute
adt = operand_def()
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
coor = opt_prop_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
IsPresentOp
dataclass
Bases: IRDLOperation
Determine if an optional function argument is PRESENT (i.e. that it was not created by a fir.absent op on the caller side).
func @_QPfoo(%arg0: !fir.box<!fir.array<?xf32>>) { %0 = fir.is_present %arg0 : (!fir.box<!fir.array<?xf32>>) -> i1 ...
Source code in xdsl/dialects/experimental/fir.py
1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 | |
name = 'fir.is_present'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
IterateWhileOp
dataclass
Bases: IRDLOperation
This single-entry, single-exit looping construct is useful for lowering counted loops that can exit early such as, for instance, implied-DO loops. It is very similar to fir.DoLoopOp with the addition that it requires a single loop-carried bool value that signals an early exit condition to the operation. A true disposition means the next loop iteration should proceed. A false indicates that the fir.iterate_while operation should terminate and return its iteration arguments. This is a degenerate counted loop in that the loop is not guaranteed to execute all iterations.
An example iterate_while that returns the counter value, the early termination condition, and an extra loop-carried value is shown here. This loop counts from %lo to %up (inclusive), stepping by %c1, so long as the early exit (%ok) is true. The iter_args %sh value is also carried by the loop. The result triple is the values of %i=phi(%lo,%i+%c1), %ok=phi(%okIn,%okNew), and %sh=phi(%shIn,%shNew) from the last executed iteration.
%v:3 = fir.iterate_while (%i = %lo to %up step %c1) and (%ok = %okIn) iter_args(%sh = %shIn) -> (index, i1, i16) { %shNew = fir.call @bar(%sh) : (i16) -> i16 %okNew = fir.call @foo(%sh) : (i16) -> i1 fir.result %i, %okNew, %shNew : index, i1, i16 }
Source code in xdsl/dialects/experimental/fir.py
1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 | |
name = 'fir.iterate_while'
class-attribute
instance-attribute
lowerBound = operand_def()
class-attribute
instance-attribute
upperBound = operand_def()
class-attribute
instance-attribute
step = operand_def()
class-attribute
instance-attribute
iterateIn = operand_def()
class-attribute
instance-attribute
initArgs = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
LenParamIndexOp
dataclass
Bases: IRDLOperation
Generate a LEN parameter (offset) value from a LEN parameter identifier. The type of a LEN parameter value is '!fir.len' and these values can be used with the fir.coordinate_of instructions to compute (abstract) addresses of LEN parameters.
%e = fir.len_param_index len1, !fir.type
Source code in xdsl/dialects/experimental/fir.py
1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 | |
name = 'fir.len_param_index'
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
LoadOp
dataclass
Bases: IRDLOperation
Load a value from a memory reference into an ssa-value (virtual register).
Produces an immutable ssa-value of the referent type. A memory reference
has type '!fir.ref
%a = fir.alloca i32
%l = fir.load %a : !fir.ref
The ssa-value has an undefined value if the memory reference is undefined or null.
Source code in xdsl/dialects/experimental/fir.py
1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 | |
name = 'fir.load'
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
MulcOp
dataclass
Bases: IRDLOperation
Source code in xdsl/dialects/experimental/fir.py
1943 1944 1945 1946 1947 1948 1949 1950 | |
name = 'fir.mulc'
class-attribute
instance-attribute
lhs = operand_def()
class-attribute
instance-attribute
rhs = operand_def()
class-attribute
instance-attribute
fastmath = opt_prop_def(FastMathFlagsAttr)
class-attribute
instance-attribute
result = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
NegcOp
dataclass
Bases: IRDLOperation
Source code in xdsl/dialects/experimental/fir.py
1953 1954 1955 1956 1957 1958 | |
name = 'fir.negc'
class-attribute
instance-attribute
operand = operand_def()
class-attribute
instance-attribute
result = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
NoReassocOp
dataclass
Bases: IRDLOperation
Primitive operation meant to intrusively prevent operator reassociation. The operation is otherwise a nop and the value returned is the same as the argument.
The presence of this operation prevents any local optimizations. In the example below, this would prevent possibly replacing the multiply and add operations with a single FMA operation.
%98 = arith.mulf %96, %97 : f32 %99 = fir.no_reassoc %98 : f32 %a0 = arith.addf %99, %95 : f32
Source code in xdsl/dialects/experimental/fir.py
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 | |
name = 'fir.no_reassoc'
class-attribute
instance-attribute
val = operand_def()
class-attribute
instance-attribute
res = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ReboxOp
dataclass
Bases: IRDLOperation
Create a new boxed reference value from another box. This is meant to be used when the taking a reference to part of a boxed value, or to an entire boxed value with new shape or type information.
The new extra information can be
- new shape information (new lower bounds, new rank, or new extents. New rank/extents can only be provided if the original fir.box is contiguous in all dimension but maybe the first row). The shape operand must be provided to set new shape information.
- new type (only for derived types). It is possible to set the dynamic type of the new box to one of the parent types of the input box dynamic type. Type parameters cannot be changed. This change is reflected in the requested result type of the new box.
A slice argument can be provided to build a reference to part of a boxed value. In this case, the shape operand must be absent or be a fir.shift that can be used to provide a non default origin for the slice.
The following example illustrates creating a fir.box for x(10:33:2) where x is described by a fir.box and has non default lower bounds, and then applying a new 2-dimension shape to this fir.box.
%0 = fir.slice %c10, %c33, %c2 : (index, index, index) -> !fir.slice<1> %1 = fir.shift %c0 : (index) -> !fir.shift<1> %2 = fir.rebox %x(%1) [%0] : (!fir.box<!fir.array<?xf32>>, !fir.shift<1>, !fir.slice<1>) -> !fir.box<!fir.array<?xf32>> %3 = fir.shape %c3, %c4 : (index, index) -> !fir.shape<2> %4 = fir.rebox %2(%3) : (!fir.box<!fir.array<?xf32>>, !fir.shape<2>) -> !fir.box<!fir.array<?x?xf32>>
Source code in xdsl/dialects/experimental/fir.py
1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 | |
name = 'fir.rebox'
class-attribute
instance-attribute
box = opt_operand_def()
class-attribute
instance-attribute
shape = opt_operand_def()
class-attribute
instance-attribute
slice = opt_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
ResultOp
dataclass
Bases: IRDLOperation
Result takes a list of ssa-values produced in the block and forwards them as a result to the operation that owns the region of the block. The operation can retain the values or return them to its parent block depending upon its semantics.
Source code in xdsl/dialects/experimental/fir.py
2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 | |
name = 'fir.result'
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
traits = traits_def(IsTerminator())
class-attribute
instance-attribute
SaveResultOp
dataclass
Bases: IRDLOperation
Save the result of a function returning an array, box, or record type value into a memory location given the shape and LEN parameters of the result.
Function results of type fir.box, fir.array, or fir.rec are abstract values that require a storage to be manipulated on the caller side. This operation allows associating such abstract result to a storage. In later lowering of the function interfaces, this storage might be used to pass the result in memory.
For arrays, result, it is required to provide the shape of the result. For character arrays and derived types with LEN parameters, the LEN parameter values must be provided.
The fir.save_result associated to a function call must immediately follow the call and be in the same block.
%buffer = fir.alloca fir.array<?xf32>, %c100 %shape = fir.shape %c100 %array_result = fir.call @foo() : () -> fir.array<?xf32> fir.save_result %array_result to %buffer(%shape) %coor = fir.array_coor %buffer%(%shape), %c5 %fifth_element = fir.load %coor : f32
The above fir.save_result allows saving a fir.array function result into a buffer to later access its 5th element.
Source code in xdsl/dialects/experimental/fir.py
2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 | |
name = 'fir.save_result'
class-attribute
instance-attribute
value = operand_def()
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
shape = operand_def()
class-attribute
instance-attribute
typeparams = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
SelectCaseOp
dataclass
Bases: IRDLOperation
Similar to 'select', select_case provides a way to express Fortran's SELECT CASE construct. In this case, the selector value is matched against variables (not just constants) and ranges. The structure is the same as 'select', but select_case allows for the expression of more complex match conditions.
fir.select_case %arg : i32 [ #fir.point, %0, ^bb1(%0 : i32), #fir.lower, %1, ^bb2(%2,%arg,%arg2,%1 : i32,i32,i32,i32), #fir.interval, %2, %3, ^bb3(%2,%arg2 : i32,i32), #fir.upper, %arg, ^bb4(%1 : i32), unit, ^bb5]
Source code in xdsl/dialects/experimental/fir.py
2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 | |
name = 'fir.select_case'
class-attribute
instance-attribute
selector = operand_def()
class-attribute
instance-attribute
compareArgs = operand_def()
class-attribute
instance-attribute
targetArgs = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
SelectOp
dataclass
Bases: IRDLOperation
A multiway branch terminator with similar semantics to C's 'switch' statement. A selector value is matched against a list of constants of the same type for a match. When a match is found, control is transferred to the corresponding basic block. A 'select' must have at least one basic block with a corresponding unit match, and that block will be selected when all other conditions fail to match.
fir.select %arg:i32 [1, ^bb1(%0 : i32), 2, ^bb2(%2,%arg,%arg2 : i32,i32,i32), -3, ^bb3(%arg2,%2 : i32,i32), 4, ^bb4(%1 : i32), unit, ^bb5]
Source code in xdsl/dialects/experimental/fir.py
2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 | |
name = 'fir.select'
class-attribute
instance-attribute
selector = operand_def()
class-attribute
instance-attribute
compareArgs = operand_def()
class-attribute
instance-attribute
targetArgs = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
SelectRankOp
dataclass
Bases: IRDLOperation
Similar to 'select', select_rank provides a way to express Fortran's SELECT RANK construct. In this case, the rank of the selector value is matched against constants of integer type. The structure is the same as 'select', but select_rank determines the rank of the selector variable at runtime to determine the best match.
fir.select_rank %arg:i32 [1, ^bb1(%0 : i32), 2, ^bb2(%2,%arg,%arg2 : i32,i32,i32), 3, ^bb3(%arg2,%2 : i32,i32), -1, ^bb4(%1 : i32), unit, ^bb5]
Source code in xdsl/dialects/experimental/fir.py
2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 | |
name = 'fir.select_rank'
class-attribute
instance-attribute
selector = operand_def()
class-attribute
instance-attribute
compareArgs = operand_def()
class-attribute
instance-attribute
targetArgs = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
SelectTypeOp
dataclass
Bases: IRDLOperation
Similar to 'select', select_type provides a way to express Fortran's SELECT TYPE construct. In this case, the type of the selector value is matched against a list of type descriptors. The structure is the same as 'select', but select_type determines the type of the selector variable at runtime to determine the best match.
fir.select_type %arg : !fir.box<()> [
#fir.type_is<!fir.type
Source code in xdsl/dialects/experimental/fir.py
2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 | |
name = 'fir.select_type'
class-attribute
instance-attribute
selector = operand_def()
class-attribute
instance-attribute
compareArgs = operand_def()
class-attribute
instance-attribute
targetArgs = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ShapeOp
dataclass
Bases: IRDLOperation
The arguments are an ordered list of integral type values that define the runtime extent of each dimension of an array. The shape information is given in the same row-to-column order as Fortran. This abstract shape value must be applied to a reified object, so all shape information must be specified. The extent must be nonnegative.
%d = fir.shape %row_sz, %col_sz : (index, index) -> !fir.shape<2>
Source code in xdsl/dialects/experimental/fir.py
2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 | |
name = 'fir.shape'
class-attribute
instance-attribute
extents = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
ShapeShiftOp
dataclass
Bases: IRDLOperation
The arguments are an ordered list of integral type values that is a multiple of 2 in length. Each such pair is defined as: the lower bound and the extent for that dimension. The shifted shape information is given in the same row-to-column order as Fortran. This abstract shifted shape value must be applied to a reified object, so all shifted shape information must be specified. The extent must be nonnegative.
%d = fir.shape_shift %lo, %extent : (index, index) -> !fir.shapeshift<1>
Source code in xdsl/dialects/experimental/fir.py
2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 | |
name = 'fir.shape_shift'
class-attribute
instance-attribute
pairs = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
ShiftOp
dataclass
Bases: IRDLOperation
The arguments are an ordered list of integral type values that define the runtime lower bound of each dimension of an array. The shape information is given in the same row-to-column order as Fortran. This abstract shift value must be applied to a reified object, so all shift information must be specified.
%d = fir.shift %row_lb, %col_lb : (index, index) -> !fir.shift<2>
Source code in xdsl/dialects/experimental/fir.py
2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 | |
name = 'fir.shift'
class-attribute
instance-attribute
origins = var_operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
SliceOp
dataclass
Bases: IRDLOperation
The array slicing arguments are an ordered list of integral type values that must be a multiple of 3 in length. Each such triple is defined as: the lower bound, the upper bound, and the stride for that dimension, as in Fortran syntax. Both bounds are inclusive. The array slice information is given in the same row-to-column order as Fortran. This abstract slice value must be applied to a reified object, so all slice information must be specified. The extent must be nonnegative and the stride must not be zero.
%d = fir.slice %lo, %hi, %step : (index, index, index) -> !fir.slice<1>
To support generalized slicing of Fortran's dynamic derived types, a slice op can be given a component path (narrowing from the product type of the original array to the specific elemental type of the sliced projection).
%fld = fir.field_index component, !fir.type
Projections of '!fir.char' type can be further narrowed to invariant substrings.
%d = fir.slice %lo, %hi, %step substr %offset, %width : (index, index, index, index, index) -> !fir.slice<1>
Source code in xdsl/dialects/experimental/fir.py
2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 | |
name = 'fir.slice'
class-attribute
instance-attribute
triples = operand_def()
class-attribute
instance-attribute
fields = operand_def()
class-attribute
instance-attribute
substr = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
StoreOp
dataclass
Bases: IRDLOperation
Store an ssa-value (virtual register) to a memory reference. The stored value must be of the same type as the referent type of the memory reference.
%v = ... : f64
%p = ... : !fir.ptr
The above store changes the value to which the pointer is pointing and not the pointer itself. The operation is undefined if the memory reference, '%p', is undefined or null.
Source code in xdsl/dialects/experimental/fir.py
2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 | |
name = 'fir.store'
class-attribute
instance-attribute
value = operand_def()
class-attribute
instance-attribute
memref = operand_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
StringLitOp
dataclass
Bases: IRDLOperation
An FIR constant that represents a sequence of characters that correspond to Fortran's CHARACTER type, including a LEN. We support CHARACTER values of different KINDs (different constant sizes).
%1 = fir.string_lit "Hello, World!"(13) : !fir.char<1> // ASCII
%2 = fir.string_lit [158, 2345](2) : !fir.char<2> // Wide chars
Source code in xdsl/dialects/experimental/fir.py
2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 | |
name = 'fir.string_lit'
class-attribute
instance-attribute
size = attr_def(IntegerAttr[IntegerType])
class-attribute
instance-attribute
value = attr_def(StringAttr)
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
SubcOp
dataclass
Bases: IRDLOperation
Source code in xdsl/dialects/experimental/fir.py
2305 2306 2307 2308 2309 2310 2311 2312 | |
name = 'fir.subc'
class-attribute
instance-attribute
lhs = operand_def()
class-attribute
instance-attribute
rhs = operand_def()
class-attribute
instance-attribute
fastmath = opt_prop_def(FastMathFlagsAttr)
class-attribute
instance-attribute
result = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
UnboxcharOp
dataclass
Bases: IRDLOperation
Unboxes a value of 'boxchar' type into a pair consisting of a memory reference to the CHARACTER data and the LEN type parameter.
%45 = ... : !fir.boxchar<1> %46:2 = fir.unboxchar %45 : (!fir.boxchar<1>) -> (!fir.ref<!fir.char<1>>, i32)
Source code in xdsl/dialects/experimental/fir.py
2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 | |
name = 'fir.unboxchar'
class-attribute
instance-attribute
boxchar = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
result_1 = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
UnboxprocOp
dataclass
Bases: IRDLOperation
Unboxes a value of 'boxproc' type into a pair consisting of a procedure pointer and a pointer to a host context.
%47 = ... : !fir.boxproc<() -> i32>
%48:2 = fir.unboxproc %47 : (!fir.ref<() -> i32>, !fir.ref
Source code in xdsl/dialects/experimental/fir.py
2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 | |
name = 'fir.unboxproc'
class-attribute
instance-attribute
boxproc = operand_def()
class-attribute
instance-attribute
result_0 = result_def()
class-attribute
instance-attribute
refTuple = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
UndefinedOp
dataclass
Bases: IRDLOperation
Constructs an ssa-value of the specified type with an undefined value.
This operation is typically created internally by the mem2reg conversion
pass. An undefined value can be of any type except '!fir.ref
%a = fir.undefined !fir.array<10 x !fir.type
The example creates an array shaped ssa-value. The array is rank 1, extent
10, and each element has type '!fir.type
Source code in xdsl/dialects/experimental/fir.py
2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 | |
name = 'fir.undefined'
class-attribute
instance-attribute
intype = result_def()
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
UnreachableOp
dataclass
Bases: IRDLOperation
Terminates a basic block with the assertion that the end of the block will never be reached at runtime. This instruction can be used immediately after a call to the Fortran runtime to terminate the program, for example. This instruction corresponds to the LLVM IR instruction 'unreachable'.
fir.unreachable
Source code in xdsl/dialects/experimental/fir.py
2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 | |
name = 'fir.unreachable'
class-attribute
instance-attribute
regs = var_region_def()
class-attribute
instance-attribute
traits = traits_def(IsTerminator())
class-attribute
instance-attribute
ZeroBitsOp
dataclass
Bases: IRDLOperation
Constructs an ssa-value of the specified type with a value of zero for all bits.
%a = fir.zero_bits !fir.box<!fir.array<10 x !fir.type
The example creates a value of type box where all bits are zero.
Source code in xdsl/dialects/experimental/fir.py
2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 | |