Tensor
tensor
Tensor = Dialect('tensor', [CastOp, CollapseShapeOp, DimOp, EmptyOp, ExpandShapeOp, ExtractOp, ExtractSliceOp, FromElementsOp, InsertOp, InsertSliceOp, ReshapeOp, SplatOp], [])
module-attribute
CastOp
Bases: IRDLOperation
Tensor cast operation.
Convert a tensor from one type to an equivalent type without changing any data elements. The source and destination types must both be tensor types with the same element type. If both are ranked, then the rank should be the same and static dimensions should match. The operation is invalid if converting to a mismatching constant dimension.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorcast-tensorcastop
Source code in xdsl/dialects/tensor.py
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 | |
name = 'tensor.cast'
class-attribute
instance-attribute
source = operand_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute]))
class-attribute
instance-attribute
dest = result_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute]))
class-attribute
instance-attribute
assembly_format = '$source attr-dict `:` type($source) `to` type($dest)'
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
__init__(source: SSAValue | Operation, dest: TensorType[Attribute])
Source code in xdsl/dialects/tensor.py
74 75 | |
verify_()
Source code in xdsl/dialects/tensor.py
77 78 79 80 81 82 83 84 85 86 87 88 89 | |
DimOp
Bases: IRDLOperation
Dimension index operation.
The tensor.dim operation takes a tensor and a dimension operand of type index. It returns the size of the requested dimension of the given tensor. If the dimension index is out of bounds, the behavior is undefined.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensordim-tensordimop
Source code in xdsl/dialects/tensor.py
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 | |
name = 'tensor.dim'
class-attribute
instance-attribute
source = operand_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute]))
class-attribute
instance-attribute
index = operand_def(IndexType)
class-attribute
instance-attribute
result = result_def(IndexType)
class-attribute
instance-attribute
traits = traits_def(Pure())
class-attribute
instance-attribute
assembly_format = 'attr-dict $source `,` $index `:` type($source)'
class-attribute
instance-attribute
__init__(source: SSAValue | Operation, index: SSAValue | Operation, attributes: Mapping[str, Attribute] | None = None)
Source code in xdsl/dialects/tensor.py
116 117 118 119 120 121 122 123 124 | |
verify_()
Source code in xdsl/dialects/tensor.py
126 127 128 129 | |
EmptyOp
Bases: IRDLOperation
Empty tensor operation.
Defines a tensor of a particular shape which could be dynamic or static. The contents of the tensor are unspecified and the only purpose of the op result is to materialize the specified shape in IR and make it available to other transformations.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorempty-tensoremptyop
Source code in xdsl/dialects/tensor.py
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | |
name = 'tensor.empty'
class-attribute
instance-attribute
dynamic_sizes = var_operand_def(IndexType)
class-attribute
instance-attribute
tensor = result_def(TensorType[Attribute])
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
__init__(dynamic_sizes: Sequence[SSAValue], tensor_type: Attribute)
Source code in xdsl/dialects/tensor.py
153 154 155 156 157 | |
print(printer: Printer)
Source code in xdsl/dialects/tensor.py
159 160 161 162 163 164 165 166 167 168 169 | |
parse(parser: Parser) -> Self
classmethod
Source code in xdsl/dialects/tensor.py
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 | |
CollapseShapeOp
dataclass
Bases: IRDLOperation
Operation to produce a tensor with a smaller rank.
The collapse_shape operation produces a new tensor of lower (or equal) rank whose dimension sizes are a reassociation of the original src dimensions.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorcollapse_shape-tensorcollapseshapeop
Source code in xdsl/dialects/tensor.py
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 | |
name = 'tensor.collapse_shape'
class-attribute
instance-attribute
src = operand_def(TensorType[Attribute])
class-attribute
instance-attribute
result = result_def(TensorType[Attribute])
class-attribute
instance-attribute
reassociation = prop_def(ContiguousArrayOfIntArray())
class-attribute
instance-attribute
assembly_format = '$src $reassociation attr-dict `:` type($src) `into` type($result)'
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
ReshapeOp
Bases: IRDLOperation
Tensor reshape operation.
The reshape operation converts a tensor from one type to an equivalent type with a provided shape. The source and destination types are compatible if both have the same element type, same number of elements.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorreshape-tensorreshapeop
Source code in xdsl/dialects/tensor.py
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | |
name = 'tensor.reshape'
class-attribute
instance-attribute
source = operand_def(TensorType[Attribute])
class-attribute
instance-attribute
shape = operand_def(TensorType[AnySignlessIntegerOrIndexType])
class-attribute
instance-attribute
result = result_def(TensorType[Attribute])
class-attribute
instance-attribute
assembly_format = 'attr-dict $source `(` $shape `)` `:` `(` type($source) `,` type($shape) `)` `->` type($result)'
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
__init__(source: SSAValue, shape: SSAValue, result_type: Attribute)
Source code in xdsl/dialects/tensor.py
238 239 240 241 242 243 244 245 | |
verify_() -> None
Source code in xdsl/dialects/tensor.py
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 | |
ExpandShapeOp
Bases: IRDLOperation
Operation to produce a tensor with a higher rank.
The tensor.expand_shape op produces a tensor of higher (or equal) rank than the operand src whose dimension sizes are a reassociation of src.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorexpand_shape-tensorexpandshapeop
Source code in xdsl/dialects/tensor.py
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | |
DYNAMIC_INDEX: int = -9223372036854775808
class-attribute
name = 'tensor.expand_shape'
class-attribute
instance-attribute
src = operand_def(TensorType)
class-attribute
instance-attribute
dynamic_output_shape = var_operand_def(IndexType)
class-attribute
instance-attribute
reassociation = prop_def(ContiguousArrayOfIntArray())
class-attribute
instance-attribute
static_output_shape = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
result = result_def(TensorType[Attribute])
class-attribute
instance-attribute
__init__(src: SSAValue | Operation, dynamic_output_shape: Sequence[SSAValue], reassociation: ArrayAttr[ArrayAttr[IntegerAttr]], static_output_shape: Sequence[int] | DenseArrayBase, result_type: TensorType[Attribute], attributes: dict[str, Attribute] | None = None)
Source code in xdsl/dialects/tensor.py
310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | |
verify_()
Source code in xdsl/dialects/tensor.py
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 | |
parse(parser: Parser) -> Self
classmethod
Source code in xdsl/dialects/tensor.py
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 | |
print(printer: Printer)
Source code in xdsl/dialects/tensor.py
381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 | |
ExtractSliceOp
dataclass
Bases: IRDLOperation
Extract slice operation.
Extracts a tensor from another tensor as specified by the operation’s offsets, sizes and strides arguments.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorextract_slice-tensorextractsliceop
Source code in xdsl/dialects/tensor.py
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | |
name = 'tensor.extract_slice'
class-attribute
instance-attribute
source = operand_def(TensorType)
class-attribute
instance-attribute
offsets = var_operand_def(IndexType)
class-attribute
instance-attribute
sizes = var_operand_def(IndexType)
class-attribute
instance-attribute
strides = var_operand_def(IndexType)
class-attribute
instance-attribute
static_offsets = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
static_sizes = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
static_strides = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
result = result_def(TensorType)
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
from_static_parameters(source: SSAValue | Operation, offsets: Sequence[int], sizes: Sequence[int], strides: Sequence[int] | None = None, reduce_rank: bool = False) -> ExtractSliceOp
staticmethod
Source code in xdsl/dialects/tensor.py
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 | |
InsertSliceOp
dataclass
Bases: IRDLOperation
Insert_slice operation.
The insert_slice operation insert a tensor, source, into another tensor, dest, as specified by the operation’s offsets, sizes and strides arguments. It returns a copy of dest with the proper slice updated with the value of source.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorinsert_slice-tensorinsertsliceop
Source code in xdsl/dialects/tensor.py
459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | |
name = 'tensor.insert_slice'
class-attribute
instance-attribute
source = operand_def(TensorType)
class-attribute
instance-attribute
dest = operand_def(TensorType)
class-attribute
instance-attribute
offsets = var_operand_def(IndexType)
class-attribute
instance-attribute
sizes = var_operand_def(IndexType)
class-attribute
instance-attribute
strides = var_operand_def(IndexType)
class-attribute
instance-attribute
static_offsets = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
static_sizes = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
static_strides = prop_def(DenseArrayBase.constr(i64))
class-attribute
instance-attribute
result = result_def(TensorType)
class-attribute
instance-attribute
irdl_options = (AttrSizedOperandSegments(as_property=True),)
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
get(source: Operand, dest: Operand, static_sizes: Sequence[int], static_offsets: Sequence[int] | None = None, static_strides: Sequence[int] | None = None, offsets: Sequence[Operand] | None = None, sizes: Sequence[Operand] | None = None, strides: Sequence[Operand] | None = None, result_type: Attribute | None = None) -> InsertSliceOp
staticmethod
Source code in xdsl/dialects/tensor.py
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 | |
from_static_parameters(source: SSAValue | Operation, dest: SSAValue | Operation, offsets: Sequence[int], sizes: Sequence[int], strides: Sequence[int] | None = None) -> InsertSliceOp
staticmethod
Source code in xdsl/dialects/tensor.py
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 | |
ExtractOp
Bases: IRDLOperation
Element extraction operation.
The tensor.extract op reads a ranked tensor and returns one element as specified by the given indices. The result of the op is a value with the same type as the elements of the tensor. The arity of indices must match the rank of the accessed value. All indices should all be of index type.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorextract-tensorextractop
Source code in xdsl/dialects/tensor.py
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | |
name = 'tensor.extract'
class-attribute
instance-attribute
tensor = operand_def(TensorType)
class-attribute
instance-attribute
indices = var_operand_def(IndexType)
class-attribute
instance-attribute
result = result_def(Attribute)
class-attribute
instance-attribute
__init__(tensor: SSAValue, indices: Sequence[SSAValue] | SSAValue, result_type: Attribute)
Source code in xdsl/dialects/tensor.py
581 582 583 584 585 586 587 588 589 | |
print(printer: Printer)
Source code in xdsl/dialects/tensor.py
591 592 593 594 595 596 597 598 | |
parse(parser: Parser) -> Self
classmethod
Source code in xdsl/dialects/tensor.py
600 601 602 603 604 605 606 607 608 609 | |
InsertOp
Bases: IRDLOperation
Element insertion operation.
The tensor.insert op inserts a scalar into a ranked tensor, dest, as specified by the operation’s indices. It returns a copy of dest with the indexed position updated to the value of scalar.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorinsert-tensorinsertop
Source code in xdsl/dialects/tensor.py
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 | |
name = 'tensor.insert'
class-attribute
instance-attribute
scalar = operand_def(Attribute)
class-attribute
instance-attribute
dest = operand_def(TensorType)
class-attribute
instance-attribute
indices = var_operand_def(IndexType)
class-attribute
instance-attribute
result = result_def(TensorType)
class-attribute
instance-attribute
__init__(scalar: SSAValue, dest: SSAValue, indices: Sequence[SSAValue] | SSAValue)
Source code in xdsl/dialects/tensor.py
632 633 634 635 636 637 638 639 640 | |
print(printer: Printer)
Source code in xdsl/dialects/tensor.py
642 643 644 645 646 647 648 649 650 651 | |
parse(parser: Parser) -> Self
classmethod
Source code in xdsl/dialects/tensor.py
653 654 655 656 657 658 659 660 661 662 663 | |
FromElementsOp
dataclass
Bases: IRDLOperation
Tensor from elements operation.
Create a N-D tensor from a range of same-type arguments. The number of provided elements should equal to the number of the elements in the result type. The elements correspond to a flattened tensor.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorfrom_elements-tensorfromelementsop
Source code in xdsl/dialects/tensor.py
666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 | |
name = 'tensor.from_elements'
class-attribute
instance-attribute
ELEMENT_TYPE: ClassVar = VarConstraint('ELEMENT_TYPE', AnyAttr())
class-attribute
instance-attribute
elements = var_operand_def(ELEMENT_TYPE)
class-attribute
instance-attribute
result = result_def(TensorType.constr(ELEMENT_TYPE))
class-attribute
instance-attribute
assembly_format = '$elements attr-dict `:` type($result)'
class-attribute
instance-attribute
SplatOp
Bases: IRDLOperation
Tensor splat or broadcast operation.
Broadcast the operand to all elements of the result tensor. An additional argument of type index must be provided for each dynamic dimension present in the result type.
https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorsplat-tensorsplatop
Source code in xdsl/dialects/tensor.py
687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 | |
name = 'tensor.splat'
class-attribute
instance-attribute
SPLAT_TYPE: ClassVar = VarConstraint('SPLAT_TYPE', AnyAttr())
class-attribute
instance-attribute
input = operand_def(SPLAT_TYPE)
class-attribute
instance-attribute
dynamicSizes = var_operand_def(IndexType)
class-attribute
instance-attribute
result = result_def(TensorType.constr(SPLAT_TYPE))
class-attribute
instance-attribute
assembly_format = '$input (`[` $dynamicSizes^ `]`)? attr-dict `:` type($result)'
class-attribute
instance-attribute
traits = traits_def(NoMemoryEffect())
class-attribute
instance-attribute
__init__(input: SSAValue, dynamicSizes: Sequence[SSAValue | Operation], result_type: TensorType[Attribute])
Source code in xdsl/dialects/tensor.py
710 711 712 713 714 715 716 | |
verify_()
Source code in xdsl/dialects/tensor.py
718 719 720 721 722 | |