Skip to content

Tensor

tensor

Tensor = Dialect('tensor', [CastOp, CollapseShapeOp, DimOp, EmptyOp, ExpandShapeOp, ExtractOp, ExtractSliceOp, FromElementsOp, InsertOp, InsertSliceOp, ReshapeOp, SplatOp], []) module-attribute

CastOp

Bases: IRDLOperation

Tensor cast operation.

Convert a tensor from one type to an equivalent type without changing any data elements. The source and destination types must both be tensor types with the same element type. If both are ranked, then the rank should be the same and static dimensions should match. The operation is invalid if converting to a mismatching constant dimension.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorcast-tensorcastop

Source code in xdsl/dialects/tensor.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
@irdl_op_definition
class CastOp(IRDLOperation):
    """
    Tensor cast operation.

    Convert a tensor from one type to an equivalent type without changing any data elements.
    The source and destination types must both be tensor types with the same element type.
    If both are ranked, then the rank should be the same and static dimensions should match.
    The operation is invalid if converting to a mismatching constant dimension.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorcast-tensorcastop
    """

    name = "tensor.cast"

    source = operand_def(
        base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute])
    )
    dest = result_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute]))

    assembly_format = "$source attr-dict `:` type($source) `to` type($dest)"

    traits = traits_def(NoMemoryEffect())

    def __init__(self, source: SSAValue | Operation, dest: TensorType[Attribute]):
        super().__init__(operands=(source,), result_types=(dest,))

    def verify_(self):
        source_type = self.source.type
        dest_type = self.dest.type

        if isinstance(source_type, TensorType) and isinstance(dest_type, TensorType):
            # rank should be the same + constant shapes equal
            if len(source_type.get_shape()) != (len(dest_type.get_shape())):
                raise VerifyException("source and destination rank should be the same")
            for a, b in zip(source_type.get_shape(), dest_type.get_shape()):
                if a >= 0 and b >= 0 and a != b:
                    raise VerifyException(
                        "source and destination constant dimensions should match"
                    )

name = 'tensor.cast' class-attribute instance-attribute

source = operand_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute])) class-attribute instance-attribute

dest = result_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute])) class-attribute instance-attribute

assembly_format = '$source attr-dict `:` type($source) `to` type($dest)' class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

__init__(source: SSAValue | Operation, dest: TensorType[Attribute])

Source code in xdsl/dialects/tensor.py
74
75
def __init__(self, source: SSAValue | Operation, dest: TensorType[Attribute]):
    super().__init__(operands=(source,), result_types=(dest,))

verify_()

Source code in xdsl/dialects/tensor.py
77
78
79
80
81
82
83
84
85
86
87
88
89
def verify_(self):
    source_type = self.source.type
    dest_type = self.dest.type

    if isinstance(source_type, TensorType) and isinstance(dest_type, TensorType):
        # rank should be the same + constant shapes equal
        if len(source_type.get_shape()) != (len(dest_type.get_shape())):
            raise VerifyException("source and destination rank should be the same")
        for a, b in zip(source_type.get_shape(), dest_type.get_shape()):
            if a >= 0 and b >= 0 and a != b:
                raise VerifyException(
                    "source and destination constant dimensions should match"
                )

DimOp

Bases: IRDLOperation

Dimension index operation.

The tensor.dim operation takes a tensor and a dimension operand of type index. It returns the size of the requested dimension of the given tensor. If the dimension index is out of bounds, the behavior is undefined.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensordim-tensordimop

Source code in xdsl/dialects/tensor.py
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
@irdl_op_definition
class DimOp(IRDLOperation):
    """
    Dimension index operation.

    The tensor.dim operation takes a tensor and a dimension operand of type index.
    It returns the size of the requested dimension of the given tensor.
    If the dimension index is out of bounds, the behavior is undefined.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensordim-tensordimop
    """

    name = "tensor.dim"

    source = operand_def(
        base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute])
    )
    index = operand_def(IndexType)
    result = result_def(IndexType)

    traits = traits_def(Pure())

    assembly_format = "attr-dict $source `,` $index `:` type($source)"

    def __init__(
        self,
        source: SSAValue | Operation,
        index: SSAValue | Operation,
        attributes: Mapping[str, Attribute] | None = None,
    ):
        super().__init__(
            operands=(source, index), result_types=(IndexType(),), attributes=attributes
        )

    def verify_(self):
        if isinstance((source_type := self.source.type), TensorType):
            if not len(source_type.get_shape()):
                raise VerifyException("cannot get dim of 0-rank tensor")

name = 'tensor.dim' class-attribute instance-attribute

source = operand_def(base(TensorType[Attribute]) | base(UnrankedTensorType[Attribute])) class-attribute instance-attribute

index = operand_def(IndexType) class-attribute instance-attribute

result = result_def(IndexType) class-attribute instance-attribute

traits = traits_def(Pure()) class-attribute instance-attribute

assembly_format = 'attr-dict $source `,` $index `:` type($source)' class-attribute instance-attribute

__init__(source: SSAValue | Operation, index: SSAValue | Operation, attributes: Mapping[str, Attribute] | None = None)

Source code in xdsl/dialects/tensor.py
116
117
118
119
120
121
122
123
124
def __init__(
    self,
    source: SSAValue | Operation,
    index: SSAValue | Operation,
    attributes: Mapping[str, Attribute] | None = None,
):
    super().__init__(
        operands=(source, index), result_types=(IndexType(),), attributes=attributes
    )

verify_()

Source code in xdsl/dialects/tensor.py
126
127
128
129
def verify_(self):
    if isinstance((source_type := self.source.type), TensorType):
        if not len(source_type.get_shape()):
            raise VerifyException("cannot get dim of 0-rank tensor")

EmptyOp

Bases: IRDLOperation

Empty tensor operation.

Defines a tensor of a particular shape which could be dynamic or static. The contents of the tensor are unspecified and the only purpose of the op result is to materialize the specified shape in IR and make it available to other transformations.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorempty-tensoremptyop

Source code in xdsl/dialects/tensor.py
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
@irdl_op_definition
class EmptyOp(IRDLOperation):
    """
    Empty tensor operation.

    Defines a tensor of a particular shape which could be dynamic or static.
    The contents of the tensor are unspecified and the only purpose of the op
    result is to materialize the specified shape in IR and make it available
    to other transformations.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorempty-tensoremptyop
    """

    name = "tensor.empty"

    dynamic_sizes = var_operand_def(IndexType)

    tensor = result_def(TensorType[Attribute])

    traits = traits_def(NoMemoryEffect())

    def __init__(self, dynamic_sizes: Sequence[SSAValue], tensor_type: Attribute):
        super().__init__(
            operands=(dynamic_sizes,),
            result_types=(tensor_type,),
        )

    def print(self, printer: Printer):
        if self.dynamic_sizes:
            printer.print_string("(")
            printer.print_list(self.dynamic_sizes, printer.print_ssa_value)
            printer.print_string(")")
        else:
            printer.print_string("(")
            printer.print_string(")")

        printer.print_string(" : ")
        printer.print_attribute(self.tensor.type)

    @classmethod
    def parse(cls, parser: Parser) -> Self:
        pos = parser.pos
        parser.parse_punctuation("(")
        if parser.parse_optional_punctuation(")"):
            dynamic_sizes = ()
        else:
            unresolved_dynamic_sizes = parser.parse_comma_separated_list(
                Parser.Delimiter.NONE, parser.parse_unresolved_operand
            )
            unresolved_types = (IndexType(),) * len(unresolved_dynamic_sizes)
            parser.parse_punctuation(")")
            dynamic_sizes = parser.resolve_operands(
                unresolved_dynamic_sizes, unresolved_types, pos
            )
        parser.parse_punctuation(":")
        result_type = parser.parse_attribute()

        empty = cls(dynamic_sizes, result_type)

        return empty

name = 'tensor.empty' class-attribute instance-attribute

dynamic_sizes = var_operand_def(IndexType) class-attribute instance-attribute

tensor = result_def(TensorType[Attribute]) class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

__init__(dynamic_sizes: Sequence[SSAValue], tensor_type: Attribute)

Source code in xdsl/dialects/tensor.py
153
154
155
156
157
def __init__(self, dynamic_sizes: Sequence[SSAValue], tensor_type: Attribute):
    super().__init__(
        operands=(dynamic_sizes,),
        result_types=(tensor_type,),
    )

print(printer: Printer)

Source code in xdsl/dialects/tensor.py
159
160
161
162
163
164
165
166
167
168
169
def print(self, printer: Printer):
    if self.dynamic_sizes:
        printer.print_string("(")
        printer.print_list(self.dynamic_sizes, printer.print_ssa_value)
        printer.print_string(")")
    else:
        printer.print_string("(")
        printer.print_string(")")

    printer.print_string(" : ")
    printer.print_attribute(self.tensor.type)

parse(parser: Parser) -> Self classmethod

Source code in xdsl/dialects/tensor.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
@classmethod
def parse(cls, parser: Parser) -> Self:
    pos = parser.pos
    parser.parse_punctuation("(")
    if parser.parse_optional_punctuation(")"):
        dynamic_sizes = ()
    else:
        unresolved_dynamic_sizes = parser.parse_comma_separated_list(
            Parser.Delimiter.NONE, parser.parse_unresolved_operand
        )
        unresolved_types = (IndexType(),) * len(unresolved_dynamic_sizes)
        parser.parse_punctuation(")")
        dynamic_sizes = parser.resolve_operands(
            unresolved_dynamic_sizes, unresolved_types, pos
        )
    parser.parse_punctuation(":")
    result_type = parser.parse_attribute()

    empty = cls(dynamic_sizes, result_type)

    return empty

CollapseShapeOp dataclass

Bases: IRDLOperation

Operation to produce a tensor with a smaller rank.

The collapse_shape operation produces a new tensor of lower (or equal) rank whose dimension sizes are a reassociation of the original src dimensions.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorcollapse_shape-tensorcollapseshapeop

Source code in xdsl/dialects/tensor.py
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
@irdl_op_definition
class CollapseShapeOp(IRDLOperation):
    """
    Operation to produce a tensor with a smaller rank.

    The collapse_shape operation produces a new tensor of lower (or equal)
    rank whose dimension sizes are a reassociation of the original src dimensions.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorcollapse_shape-tensorcollapseshapeop
    """

    name = "tensor.collapse_shape"

    src = operand_def(TensorType[Attribute])
    result = result_def(TensorType[Attribute])
    reassociation = prop_def(ContiguousArrayOfIntArray())
    assembly_format = (
        "$src $reassociation attr-dict `:` type($src) `into` type($result)"
    )

    traits = traits_def(NoMemoryEffect())

name = 'tensor.collapse_shape' class-attribute instance-attribute

src = operand_def(TensorType[Attribute]) class-attribute instance-attribute

result = result_def(TensorType[Attribute]) class-attribute instance-attribute

reassociation = prop_def(ContiguousArrayOfIntArray()) class-attribute instance-attribute

assembly_format = '$src $reassociation attr-dict `:` type($src) `into` type($result)' class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

ReshapeOp

Bases: IRDLOperation

Tensor reshape operation.

The reshape operation converts a tensor from one type to an equivalent type with a provided shape. The source and destination types are compatible if both have the same element type, same number of elements.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorreshape-tensorreshapeop

Source code in xdsl/dialects/tensor.py
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
@irdl_op_definition
class ReshapeOp(IRDLOperation):
    """
    Tensor reshape operation.

    The reshape operation converts a tensor from one type to an equivalent
    type with a provided shape. The source and destination types are compatible
    if both have the same element type, same number of elements.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorreshape-tensorreshapeop
    """

    name = "tensor.reshape"

    source = operand_def(TensorType[Attribute])
    shape = operand_def(TensorType[AnySignlessIntegerOrIndexType])
    result = result_def(TensorType[Attribute])
    assembly_format = "attr-dict $source `(` $shape `)` `:` `(` type($source) `,` type($shape) `)` `->` type($result)"

    traits = traits_def(NoMemoryEffect())

    def __init__(self, source: SSAValue, shape: SSAValue, result_type: Attribute):
        super().__init__(
            operands=(
                source,
                shape,
            ),
            result_types=(result_type,),
        )

    def verify_(self) -> None:
        if not isinstance(
            source_type := self.source.type, TensorType
        ) or not isinstance(shape_type := self.shape.type, TensorType):
            raise ValueError(
                "tensor elementwise operation operands and result must be of type TensorType"
            )

        source_type = cast(TensorType[Attribute], source_type)
        shape_type = cast(TensorType[Attribute], shape_type)
        res_type = self.result.type

        if source_type.element_type != res_type.element_type:
            raise VerifyException(
                "element types of source and result tensor types should be the same"
            )

        source_type = source_type.get_shape()
        shape_type = shape_type.get_shape()
        res_type = res_type.get_shape()

        if len(shape_type) != 1:
            raise VerifyException("shape tensor must have a rank one")

        # concerns the case of static reshaping
        if math.prod(source_type) != math.prod(res_type):
            raise VerifyException(
                "source and result tensor should have the same number of elements"
            )

        shape_size = shape_type[0]
        if shape_size != len(res_type):
            raise VerifyException(
                "length of shape operand differs from the result's tensor rank"
            )

name = 'tensor.reshape' class-attribute instance-attribute

source = operand_def(TensorType[Attribute]) class-attribute instance-attribute

shape = operand_def(TensorType[AnySignlessIntegerOrIndexType]) class-attribute instance-attribute

result = result_def(TensorType[Attribute]) class-attribute instance-attribute

assembly_format = 'attr-dict $source `(` $shape `)` `:` `(` type($source) `,` type($shape) `)` `->` type($result)' class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

__init__(source: SSAValue, shape: SSAValue, result_type: Attribute)

Source code in xdsl/dialects/tensor.py
238
239
240
241
242
243
244
245
def __init__(self, source: SSAValue, shape: SSAValue, result_type: Attribute):
    super().__init__(
        operands=(
            source,
            shape,
        ),
        result_types=(result_type,),
    )

verify_() -> None

Source code in xdsl/dialects/tensor.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
def verify_(self) -> None:
    if not isinstance(
        source_type := self.source.type, TensorType
    ) or not isinstance(shape_type := self.shape.type, TensorType):
        raise ValueError(
            "tensor elementwise operation operands and result must be of type TensorType"
        )

    source_type = cast(TensorType[Attribute], source_type)
    shape_type = cast(TensorType[Attribute], shape_type)
    res_type = self.result.type

    if source_type.element_type != res_type.element_type:
        raise VerifyException(
            "element types of source and result tensor types should be the same"
        )

    source_type = source_type.get_shape()
    shape_type = shape_type.get_shape()
    res_type = res_type.get_shape()

    if len(shape_type) != 1:
        raise VerifyException("shape tensor must have a rank one")

    # concerns the case of static reshaping
    if math.prod(source_type) != math.prod(res_type):
        raise VerifyException(
            "source and result tensor should have the same number of elements"
        )

    shape_size = shape_type[0]
    if shape_size != len(res_type):
        raise VerifyException(
            "length of shape operand differs from the result's tensor rank"
        )

ExpandShapeOp

Bases: IRDLOperation

Operation to produce a tensor with a higher rank.

The tensor.expand_shape op produces a tensor of higher (or equal) rank than the operand src whose dimension sizes are a reassociation of src.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorexpand_shape-tensorexpandshapeop

Source code in xdsl/dialects/tensor.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
@irdl_op_definition
class ExpandShapeOp(IRDLOperation):
    """
    Operation to produce a tensor with a higher rank.

    The tensor.expand_shape op produces a tensor of higher (or equal)
    rank than the operand src whose dimension sizes are a reassociation of src.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorexpand_shape-tensorexpandshapeop
    """

    # Constant value used to denote dynamic indices in offsets, sizes, and strides.
    # Same constant as in MLIR.
    DYNAMIC_INDEX: ClassVar[int] = -9223372036854775808

    name = "tensor.expand_shape"

    src = operand_def(TensorType)
    dynamic_output_shape = var_operand_def(IndexType)

    reassociation = prop_def(ContiguousArrayOfIntArray())

    static_output_shape = prop_def(DenseArrayBase.constr(i64))

    result = result_def(TensorType[Attribute])

    def __init__(
        self,
        src: SSAValue | Operation,
        dynamic_output_shape: Sequence[SSAValue],
        reassociation: ArrayAttr[ArrayAttr[IntegerAttr]],
        static_output_shape: Sequence[int] | DenseArrayBase,
        result_type: TensorType[Attribute],
        attributes: dict[str, Attribute] | None = None,
    ):
        if not isinstance(static_output_shape, DenseArrayBase):
            static_output_shape = DenseArrayBase.from_list(i64, static_output_shape)

        super().__init__(
            operands=[src, dynamic_output_shape],
            result_types=[result_type],
            properties={
                "reassociation": reassociation,
                "static_output_shape": static_output_shape,
            },
            attributes=attributes,
        )

    def verify_(self):
        assert isinstance(self.src.type, ShapedType)
        assert isinstance(self.result.type, ShapedType)

        # make sure the static output shape matches the result type
        if len(self.static_output_shape) != len(self.result.type.get_shape()):
            raise VerifyException(
                "expected number of static shape dims to be equal to the output rank "
                f"({len(self.result.type.get_shape())}) but found {len(self.static_output_shape)} inputs instead"
            )

        verify_reshape_like_types(
            collapsed_type=self.src.type,
            expanded_type=self.result.type,
            reassociation=self.reassociation,
        )

    @classmethod
    def parse(cls, parser: Parser) -> Self:
        src_operand = parser.parse_unresolved_operand()

        reassociation = parser.parse_attribute()
        parser.parse_characters("output_shape")
        index = IndexType()

        # Parse shape: mixture of ints and SSA values
        dyn_shape, static_shape = parse_dynamic_index_list_without_types(
            parser, dynamic_index=cls.DYNAMIC_INDEX
        )

        dyn_shape = parser.resolve_operands(
            dyn_shape, (index,) * len(dyn_shape), parser.pos
        )

        attributes = parser.parse_optional_attr_dict()

        parser.parse_punctuation(":")
        src_type = parser.parse_type()
        parser.parse_characters("into")
        result_type = parser.parse_type()
        src = parser.resolve_operand(src_operand, src_type)

        shape_attr = DenseArrayBase.from_list(i64, static_shape)

        reassociation = cast(ArrayAttr[ArrayAttr[IntegerAttr]], reassociation)
        result_type = cast(TensorType[Attribute], result_type)

        return cls(src, dyn_shape, reassociation, shape_attr, result_type, attributes)

    def print(self, printer: Printer):
        printer.print_string(" ")
        printer.print_ssa_value(self.src)
        printer.print_string(" ")
        printer.print_attribute(self.reassociation)
        printer.print_string(" output_shape ")
        print_dynamic_index_list(
            printer,
            self.DYNAMIC_INDEX,
            self.dynamic_output_shape,
            self.static_output_shape.get_values(),
        )

        printer.print_op_attributes(attributes=self.attributes)

        printer.print_string(" : ")
        printer.print_attribute(self.src.type)
        printer.print_string(" into ")
        printer.print_attribute(self.result.type)

DYNAMIC_INDEX: int = -9223372036854775808 class-attribute

name = 'tensor.expand_shape' class-attribute instance-attribute

src = operand_def(TensorType) class-attribute instance-attribute

dynamic_output_shape = var_operand_def(IndexType) class-attribute instance-attribute

reassociation = prop_def(ContiguousArrayOfIntArray()) class-attribute instance-attribute

static_output_shape = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

result = result_def(TensorType[Attribute]) class-attribute instance-attribute

__init__(src: SSAValue | Operation, dynamic_output_shape: Sequence[SSAValue], reassociation: ArrayAttr[ArrayAttr[IntegerAttr]], static_output_shape: Sequence[int] | DenseArrayBase, result_type: TensorType[Attribute], attributes: dict[str, Attribute] | None = None)

Source code in xdsl/dialects/tensor.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
def __init__(
    self,
    src: SSAValue | Operation,
    dynamic_output_shape: Sequence[SSAValue],
    reassociation: ArrayAttr[ArrayAttr[IntegerAttr]],
    static_output_shape: Sequence[int] | DenseArrayBase,
    result_type: TensorType[Attribute],
    attributes: dict[str, Attribute] | None = None,
):
    if not isinstance(static_output_shape, DenseArrayBase):
        static_output_shape = DenseArrayBase.from_list(i64, static_output_shape)

    super().__init__(
        operands=[src, dynamic_output_shape],
        result_types=[result_type],
        properties={
            "reassociation": reassociation,
            "static_output_shape": static_output_shape,
        },
        attributes=attributes,
    )

verify_()

Source code in xdsl/dialects/tensor.py
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
def verify_(self):
    assert isinstance(self.src.type, ShapedType)
    assert isinstance(self.result.type, ShapedType)

    # make sure the static output shape matches the result type
    if len(self.static_output_shape) != len(self.result.type.get_shape()):
        raise VerifyException(
            "expected number of static shape dims to be equal to the output rank "
            f"({len(self.result.type.get_shape())}) but found {len(self.static_output_shape)} inputs instead"
        )

    verify_reshape_like_types(
        collapsed_type=self.src.type,
        expanded_type=self.result.type,
        reassociation=self.reassociation,
    )

parse(parser: Parser) -> Self classmethod

Source code in xdsl/dialects/tensor.py
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
@classmethod
def parse(cls, parser: Parser) -> Self:
    src_operand = parser.parse_unresolved_operand()

    reassociation = parser.parse_attribute()
    parser.parse_characters("output_shape")
    index = IndexType()

    # Parse shape: mixture of ints and SSA values
    dyn_shape, static_shape = parse_dynamic_index_list_without_types(
        parser, dynamic_index=cls.DYNAMIC_INDEX
    )

    dyn_shape = parser.resolve_operands(
        dyn_shape, (index,) * len(dyn_shape), parser.pos
    )

    attributes = parser.parse_optional_attr_dict()

    parser.parse_punctuation(":")
    src_type = parser.parse_type()
    parser.parse_characters("into")
    result_type = parser.parse_type()
    src = parser.resolve_operand(src_operand, src_type)

    shape_attr = DenseArrayBase.from_list(i64, static_shape)

    reassociation = cast(ArrayAttr[ArrayAttr[IntegerAttr]], reassociation)
    result_type = cast(TensorType[Attribute], result_type)

    return cls(src, dyn_shape, reassociation, shape_attr, result_type, attributes)

print(printer: Printer)

Source code in xdsl/dialects/tensor.py
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
def print(self, printer: Printer):
    printer.print_string(" ")
    printer.print_ssa_value(self.src)
    printer.print_string(" ")
    printer.print_attribute(self.reassociation)
    printer.print_string(" output_shape ")
    print_dynamic_index_list(
        printer,
        self.DYNAMIC_INDEX,
        self.dynamic_output_shape,
        self.static_output_shape.get_values(),
    )

    printer.print_op_attributes(attributes=self.attributes)

    printer.print_string(" : ")
    printer.print_attribute(self.src.type)
    printer.print_string(" into ")
    printer.print_attribute(self.result.type)

ExtractSliceOp dataclass

Bases: IRDLOperation

Extract slice operation.

Extracts a tensor from another tensor as specified by the operation’s offsets, sizes and strides arguments.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorextract_slice-tensorextractsliceop

Source code in xdsl/dialects/tensor.py
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
@irdl_op_definition
class ExtractSliceOp(IRDLOperation):
    """
    Extract slice operation.

    Extracts a tensor from another tensor as specified by the operation’s
    offsets, sizes and strides arguments.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorextract_slice-tensorextractsliceop
    """

    name = "tensor.extract_slice"

    source = operand_def(TensorType)
    offsets = var_operand_def(IndexType)
    sizes = var_operand_def(IndexType)
    strides = var_operand_def(IndexType)
    static_offsets = prop_def(DenseArrayBase.constr(i64))
    static_sizes = prop_def(DenseArrayBase.constr(i64))
    static_strides = prop_def(DenseArrayBase.constr(i64))
    result = result_def(TensorType)

    irdl_options = (AttrSizedOperandSegments(as_property=True),)

    traits = traits_def(NoMemoryEffect())

    @staticmethod
    def from_static_parameters(
        source: SSAValue | Operation,
        offsets: Sequence[int],
        sizes: Sequence[int],
        strides: Sequence[int] | None = None,
        reduce_rank: bool = False,
    ) -> ExtractSliceOp:
        if strides is None:
            strides = [1] * len(offsets)
        source_v = SSAValue.get(source, type=TensorType)
        source_t = source_v.type

        if reduce_rank:
            result_sizes = list(s for s in sizes if s != 1)
        else:
            result_sizes = list(sizes)

        return_type = TensorType(source_t.get_element_type(), result_sizes)

        return ExtractSliceOp.build(
            operands=[source, [], [], []],
            result_types=[return_type],
            properties={
                "static_offsets": DenseArrayBase.from_list(i64, offsets),
                "static_sizes": DenseArrayBase.from_list(i64, result_sizes),
                "static_strides": DenseArrayBase.from_list(i64, strides),
            },
        )

name = 'tensor.extract_slice' class-attribute instance-attribute

source = operand_def(TensorType) class-attribute instance-attribute

offsets = var_operand_def(IndexType) class-attribute instance-attribute

sizes = var_operand_def(IndexType) class-attribute instance-attribute

strides = var_operand_def(IndexType) class-attribute instance-attribute

static_offsets = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

static_sizes = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

static_strides = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

result = result_def(TensorType) class-attribute instance-attribute

irdl_options = (AttrSizedOperandSegments(as_property=True),) class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

from_static_parameters(source: SSAValue | Operation, offsets: Sequence[int], sizes: Sequence[int], strides: Sequence[int] | None = None, reduce_rank: bool = False) -> ExtractSliceOp staticmethod

Source code in xdsl/dialects/tensor.py
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
@staticmethod
def from_static_parameters(
    source: SSAValue | Operation,
    offsets: Sequence[int],
    sizes: Sequence[int],
    strides: Sequence[int] | None = None,
    reduce_rank: bool = False,
) -> ExtractSliceOp:
    if strides is None:
        strides = [1] * len(offsets)
    source_v = SSAValue.get(source, type=TensorType)
    source_t = source_v.type

    if reduce_rank:
        result_sizes = list(s for s in sizes if s != 1)
    else:
        result_sizes = list(sizes)

    return_type = TensorType(source_t.get_element_type(), result_sizes)

    return ExtractSliceOp.build(
        operands=[source, [], [], []],
        result_types=[return_type],
        properties={
            "static_offsets": DenseArrayBase.from_list(i64, offsets),
            "static_sizes": DenseArrayBase.from_list(i64, result_sizes),
            "static_strides": DenseArrayBase.from_list(i64, strides),
        },
    )

InsertSliceOp dataclass

Bases: IRDLOperation

Insert_slice operation.

The insert_slice operation insert a tensor, source, into another tensor, dest, as specified by the operation’s offsets, sizes and strides arguments. It returns a copy of dest with the proper slice updated with the value of source.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorinsert_slice-tensorinsertsliceop

Source code in xdsl/dialects/tensor.py
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
@irdl_op_definition
class InsertSliceOp(IRDLOperation):
    """
    Insert_slice operation.

    The insert_slice operation insert a tensor, source, into another tensor, dest,
    as specified by the operation’s offsets, sizes and strides arguments. It
    returns a copy of dest with the proper slice updated with the value of source.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorinsert_slice-tensorinsertsliceop
    """

    name = "tensor.insert_slice"

    source = operand_def(TensorType)
    dest = operand_def(TensorType)
    offsets = var_operand_def(IndexType)
    sizes = var_operand_def(IndexType)
    strides = var_operand_def(IndexType)
    static_offsets = prop_def(DenseArrayBase.constr(i64))
    static_sizes = prop_def(DenseArrayBase.constr(i64))
    static_strides = prop_def(DenseArrayBase.constr(i64))
    result = result_def(TensorType)

    irdl_options = (AttrSizedOperandSegments(as_property=True),)

    traits = traits_def(NoMemoryEffect())

    @staticmethod
    def get(
        source: Operand,
        dest: Operand,
        static_sizes: Sequence[int],
        static_offsets: Sequence[int] | None = None,
        static_strides: Sequence[int] | None = None,
        offsets: Sequence[Operand] | None = None,
        sizes: Sequence[Operand] | None = None,
        strides: Sequence[Operand] | None = None,
        result_type: Attribute | None = None,
    ) -> InsertSliceOp:
        dims = len(static_sizes)
        offsets = [] if offsets is None else offsets
        sizes = [] if sizes is None else sizes
        strides = [] if strides is None else strides
        if not static_offsets:
            static_offsets = [DYNAMIC_INDEX] * len(offsets) + (
                [0] * (dims - len(offsets))
            )
        if not static_strides:
            static_strides = [DYNAMIC_INDEX] * len(strides) + (
                [1] * (dims - len(strides))
            )
        return InsertSliceOp.build(
            operands=[
                source,
                dest,
                offsets,
                sizes,
                strides,
            ],
            properties={
                "static_offsets": DenseArrayBase.from_list(
                    i64,
                    static_offsets,
                ),
                "static_sizes": DenseArrayBase.from_list(
                    i64,
                    static_sizes,
                ),
                "static_strides": DenseArrayBase.from_list(
                    i64,
                    static_strides,
                ),
            },
            result_types=[result_type if result_type else dest.type],
        )

    @staticmethod
    def from_static_parameters(
        source: SSAValue | Operation,
        dest: SSAValue | Operation,
        offsets: Sequence[int],
        sizes: Sequence[int],
        strides: Sequence[int] | None = None,
    ) -> InsertSliceOp:
        source = SSAValue.get(source)
        dest = SSAValue.get(dest)

        if strides is None:
            strides = [1] * len(sizes)

        return InsertSliceOp.build(
            operands=[source, dest, [], [], []],
            result_types=[dest.type],
            properties={
                "static_offsets": DenseArrayBase.from_list(i64, offsets),
                "static_sizes": DenseArrayBase.from_list(i64, sizes),
                "static_strides": DenseArrayBase.from_list(i64, strides),
            },
        )

name = 'tensor.insert_slice' class-attribute instance-attribute

source = operand_def(TensorType) class-attribute instance-attribute

dest = operand_def(TensorType) class-attribute instance-attribute

offsets = var_operand_def(IndexType) class-attribute instance-attribute

sizes = var_operand_def(IndexType) class-attribute instance-attribute

strides = var_operand_def(IndexType) class-attribute instance-attribute

static_offsets = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

static_sizes = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

static_strides = prop_def(DenseArrayBase.constr(i64)) class-attribute instance-attribute

result = result_def(TensorType) class-attribute instance-attribute

irdl_options = (AttrSizedOperandSegments(as_property=True),) class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

get(source: Operand, dest: Operand, static_sizes: Sequence[int], static_offsets: Sequence[int] | None = None, static_strides: Sequence[int] | None = None, offsets: Sequence[Operand] | None = None, sizes: Sequence[Operand] | None = None, strides: Sequence[Operand] | None = None, result_type: Attribute | None = None) -> InsertSliceOp staticmethod

Source code in xdsl/dialects/tensor.py
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
@staticmethod
def get(
    source: Operand,
    dest: Operand,
    static_sizes: Sequence[int],
    static_offsets: Sequence[int] | None = None,
    static_strides: Sequence[int] | None = None,
    offsets: Sequence[Operand] | None = None,
    sizes: Sequence[Operand] | None = None,
    strides: Sequence[Operand] | None = None,
    result_type: Attribute | None = None,
) -> InsertSliceOp:
    dims = len(static_sizes)
    offsets = [] if offsets is None else offsets
    sizes = [] if sizes is None else sizes
    strides = [] if strides is None else strides
    if not static_offsets:
        static_offsets = [DYNAMIC_INDEX] * len(offsets) + (
            [0] * (dims - len(offsets))
        )
    if not static_strides:
        static_strides = [DYNAMIC_INDEX] * len(strides) + (
            [1] * (dims - len(strides))
        )
    return InsertSliceOp.build(
        operands=[
            source,
            dest,
            offsets,
            sizes,
            strides,
        ],
        properties={
            "static_offsets": DenseArrayBase.from_list(
                i64,
                static_offsets,
            ),
            "static_sizes": DenseArrayBase.from_list(
                i64,
                static_sizes,
            ),
            "static_strides": DenseArrayBase.from_list(
                i64,
                static_strides,
            ),
        },
        result_types=[result_type if result_type else dest.type],
    )

from_static_parameters(source: SSAValue | Operation, dest: SSAValue | Operation, offsets: Sequence[int], sizes: Sequence[int], strides: Sequence[int] | None = None) -> InsertSliceOp staticmethod

Source code in xdsl/dialects/tensor.py
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
@staticmethod
def from_static_parameters(
    source: SSAValue | Operation,
    dest: SSAValue | Operation,
    offsets: Sequence[int],
    sizes: Sequence[int],
    strides: Sequence[int] | None = None,
) -> InsertSliceOp:
    source = SSAValue.get(source)
    dest = SSAValue.get(dest)

    if strides is None:
        strides = [1] * len(sizes)

    return InsertSliceOp.build(
        operands=[source, dest, [], [], []],
        result_types=[dest.type],
        properties={
            "static_offsets": DenseArrayBase.from_list(i64, offsets),
            "static_sizes": DenseArrayBase.from_list(i64, sizes),
            "static_strides": DenseArrayBase.from_list(i64, strides),
        },
    )

ExtractOp

Bases: IRDLOperation

Element extraction operation.

The tensor.extract op reads a ranked tensor and returns one element as specified by the given indices. The result of the op is a value with the same type as the elements of the tensor. The arity of indices must match the rank of the accessed value. All indices should all be of index type.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorextract-tensorextractop

Source code in xdsl/dialects/tensor.py
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
@irdl_op_definition
class ExtractOp(IRDLOperation):
    """
    Element extraction operation.

    The tensor.extract op reads a ranked tensor and returns one element as specified
    by the given indices. The result of the op is a value with the same type as the
    elements of the tensor. The arity of indices must match the rank of the accessed
    value. All indices should all be of index type.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorextract-tensorextractop
    """

    name = "tensor.extract"

    tensor = operand_def(TensorType)
    indices = var_operand_def(IndexType)
    result = result_def(Attribute)
    # assembly_format = "$tensor `[` $indices `]` attr-dict `:` type($tensor)"

    def __init__(
        self,
        tensor: SSAValue,
        indices: Sequence[SSAValue] | SSAValue,
        result_type: Attribute,
    ):
        if isinstance(indices, SSAValue):
            indices = [indices]
        return super().__init__(operands=[tensor, indices], result_types=[result_type])

    def print(self, printer: Printer):
        printer.print_string(" ")
        printer.print_ssa_value(self.tensor)
        printer.print_string("[")
        printer.print_list(self.indices, printer.print_ssa_value)
        printer.print_string("]")
        printer.print_string(" : ")
        printer.print_attribute(self.tensor.type)

    @classmethod
    def parse(cls, parser: Parser) -> Self:
        tensor = parser.parse_operand()
        indices = parser.parse_comma_separated_list(
            delimiter=parser.Delimiter.SQUARE, parse=parser.parse_operand
        )
        parser.parse_punctuation(":")
        source_tensor_type = parser.parse_type()
        tensor_type = cast(TensorType[Attribute], source_tensor_type)
        return cls(tensor, indices, tensor_type.get_element_type())

name = 'tensor.extract' class-attribute instance-attribute

tensor = operand_def(TensorType) class-attribute instance-attribute

indices = var_operand_def(IndexType) class-attribute instance-attribute

result = result_def(Attribute) class-attribute instance-attribute

__init__(tensor: SSAValue, indices: Sequence[SSAValue] | SSAValue, result_type: Attribute)

Source code in xdsl/dialects/tensor.py
581
582
583
584
585
586
587
588
589
def __init__(
    self,
    tensor: SSAValue,
    indices: Sequence[SSAValue] | SSAValue,
    result_type: Attribute,
):
    if isinstance(indices, SSAValue):
        indices = [indices]
    return super().__init__(operands=[tensor, indices], result_types=[result_type])

print(printer: Printer)

Source code in xdsl/dialects/tensor.py
591
592
593
594
595
596
597
598
def print(self, printer: Printer):
    printer.print_string(" ")
    printer.print_ssa_value(self.tensor)
    printer.print_string("[")
    printer.print_list(self.indices, printer.print_ssa_value)
    printer.print_string("]")
    printer.print_string(" : ")
    printer.print_attribute(self.tensor.type)

parse(parser: Parser) -> Self classmethod

Source code in xdsl/dialects/tensor.py
600
601
602
603
604
605
606
607
608
609
@classmethod
def parse(cls, parser: Parser) -> Self:
    tensor = parser.parse_operand()
    indices = parser.parse_comma_separated_list(
        delimiter=parser.Delimiter.SQUARE, parse=parser.parse_operand
    )
    parser.parse_punctuation(":")
    source_tensor_type = parser.parse_type()
    tensor_type = cast(TensorType[Attribute], source_tensor_type)
    return cls(tensor, indices, tensor_type.get_element_type())

InsertOp

Bases: IRDLOperation

Element insertion operation.

The tensor.insert op inserts a scalar into a ranked tensor, dest, as specified by the operation’s indices. It returns a copy of dest with the indexed position updated to the value of scalar.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorinsert-tensorinsertop

Source code in xdsl/dialects/tensor.py
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
@irdl_op_definition
class InsertOp(IRDLOperation):
    """
    Element insertion operation.

    The tensor.insert op inserts a scalar into a ranked tensor, dest, as
    specified by the operation’s indices. It returns a copy of dest with the
    indexed position updated to the value of scalar.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorinsert-tensorinsertop
    """

    name = "tensor.insert"

    scalar = operand_def(Attribute)
    dest = operand_def(TensorType)
    indices = var_operand_def(IndexType)
    result = result_def(TensorType)
    # assembly_format = "$scalar `into` $dest `[` $indices `]` attr-dict `:` type($dest)"

    def __init__(
        self,
        scalar: SSAValue,
        dest: SSAValue,
        indices: Sequence[SSAValue] | SSAValue,
    ):
        if isinstance(indices, SSAValue):
            indices = [indices]
        super().__init__(operands=(scalar, dest, indices), result_types=(dest.type,))

    def print(self, printer: Printer):
        printer.print_string(" ")
        printer.print_ssa_value(self.scalar)
        printer.print_string(" into ")
        printer.print_ssa_value(self.dest)
        printer.print_string("[")
        printer.print_list(self.indices, printer.print_ssa_value)
        printer.print_string("]")
        printer.print_string(" : ")
        printer.print_attribute(self.dest.type)

    @classmethod
    def parse(cls, parser: Parser) -> Self:
        scalar = parser.parse_operand()
        parser.parse_characters("into")
        dest = parser.parse_operand()
        indices = parser.parse_comma_separated_list(
            delimiter=parser.Delimiter.SQUARE, parse=parser.parse_operand
        )
        parser.parse_punctuation(":")
        parser.parse_type()
        return cls(scalar, dest, indices)

name = 'tensor.insert' class-attribute instance-attribute

scalar = operand_def(Attribute) class-attribute instance-attribute

dest = operand_def(TensorType) class-attribute instance-attribute

indices = var_operand_def(IndexType) class-attribute instance-attribute

result = result_def(TensorType) class-attribute instance-attribute

__init__(scalar: SSAValue, dest: SSAValue, indices: Sequence[SSAValue] | SSAValue)

Source code in xdsl/dialects/tensor.py
632
633
634
635
636
637
638
639
640
def __init__(
    self,
    scalar: SSAValue,
    dest: SSAValue,
    indices: Sequence[SSAValue] | SSAValue,
):
    if isinstance(indices, SSAValue):
        indices = [indices]
    super().__init__(operands=(scalar, dest, indices), result_types=(dest.type,))

print(printer: Printer)

Source code in xdsl/dialects/tensor.py
642
643
644
645
646
647
648
649
650
651
def print(self, printer: Printer):
    printer.print_string(" ")
    printer.print_ssa_value(self.scalar)
    printer.print_string(" into ")
    printer.print_ssa_value(self.dest)
    printer.print_string("[")
    printer.print_list(self.indices, printer.print_ssa_value)
    printer.print_string("]")
    printer.print_string(" : ")
    printer.print_attribute(self.dest.type)

parse(parser: Parser) -> Self classmethod

Source code in xdsl/dialects/tensor.py
653
654
655
656
657
658
659
660
661
662
663
@classmethod
def parse(cls, parser: Parser) -> Self:
    scalar = parser.parse_operand()
    parser.parse_characters("into")
    dest = parser.parse_operand()
    indices = parser.parse_comma_separated_list(
        delimiter=parser.Delimiter.SQUARE, parse=parser.parse_operand
    )
    parser.parse_punctuation(":")
    parser.parse_type()
    return cls(scalar, dest, indices)

FromElementsOp dataclass

Bases: IRDLOperation

Tensor from elements operation.

Create a N-D tensor from a range of same-type arguments. The number of provided elements should equal to the number of the elements in the result type. The elements correspond to a flattened tensor.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorfrom_elements-tensorfromelementsop

Source code in xdsl/dialects/tensor.py
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
@irdl_op_definition
class FromElementsOp(IRDLOperation):
    """
    Tensor from elements operation.

    Create a N-D tensor from a range of same-type arguments. The number of provided
    elements should equal to the number of the elements in the result type.
    The elements correspond to a flattened tensor.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorfrom_elements-tensorfromelementsop
    """

    name = "tensor.from_elements"

    ELEMENT_TYPE: ClassVar = VarConstraint("ELEMENT_TYPE", AnyAttr())

    elements = var_operand_def(ELEMENT_TYPE)
    result = result_def(TensorType.constr(ELEMENT_TYPE))
    assembly_format = "$elements attr-dict `:` type($result)"

name = 'tensor.from_elements' class-attribute instance-attribute

ELEMENT_TYPE: ClassVar = VarConstraint('ELEMENT_TYPE', AnyAttr()) class-attribute instance-attribute

elements = var_operand_def(ELEMENT_TYPE) class-attribute instance-attribute

result = result_def(TensorType.constr(ELEMENT_TYPE)) class-attribute instance-attribute

assembly_format = '$elements attr-dict `:` type($result)' class-attribute instance-attribute

SplatOp

Bases: IRDLOperation

Tensor splat or broadcast operation.

Broadcast the operand to all elements of the result tensor. An additional argument of type index must be provided for each dynamic dimension present in the result type.

https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorsplat-tensorsplatop

Source code in xdsl/dialects/tensor.py
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
@irdl_op_definition
class SplatOp(IRDLOperation):
    """
    Tensor splat or broadcast operation.

    Broadcast the operand to all elements of the result tensor. An additional
    argument of type index must be provided for each dynamic dimension present
    in the result type.

    https://mlir.llvm.org/docs/Dialects/TensorOps/#tensorsplat-tensorsplatop
    """

    name = "tensor.splat"

    SPLAT_TYPE: ClassVar = VarConstraint("SPLAT_TYPE", AnyAttr())

    input = operand_def(SPLAT_TYPE)
    dynamicSizes = var_operand_def(IndexType)
    result = result_def(TensorType.constr(SPLAT_TYPE))
    assembly_format = "$input (`[` $dynamicSizes^ `]`)? attr-dict `:` type($result)"

    traits = traits_def(NoMemoryEffect())

    def __init__(
        self,
        input: SSAValue,
        dynamicSizes: Sequence[SSAValue | Operation],
        result_type: TensorType[Attribute],
    ):
        super().__init__(operands=(input, dynamicSizes), result_types=(result_type,))

    def verify_(self):
        if self.result.type.get_shape().count(DYNAMIC_INDEX) != len(self.dynamicSizes):
            raise VerifyException(
                "number of dynamic sizes must equal number of unknown dimensions in result tensor"
            )

name = 'tensor.splat' class-attribute instance-attribute

SPLAT_TYPE: ClassVar = VarConstraint('SPLAT_TYPE', AnyAttr()) class-attribute instance-attribute

input = operand_def(SPLAT_TYPE) class-attribute instance-attribute

dynamicSizes = var_operand_def(IndexType) class-attribute instance-attribute

result = result_def(TensorType.constr(SPLAT_TYPE)) class-attribute instance-attribute

assembly_format = '$input (`[` $dynamicSizes^ `]`)? attr-dict `:` type($result)' class-attribute instance-attribute

traits = traits_def(NoMemoryEffect()) class-attribute instance-attribute

__init__(input: SSAValue, dynamicSizes: Sequence[SSAValue | Operation], result_type: TensorType[Attribute])

Source code in xdsl/dialects/tensor.py
710
711
712
713
714
715
716
def __init__(
    self,
    input: SSAValue,
    dynamicSizes: Sequence[SSAValue | Operation],
    result_type: TensorType[Attribute],
):
    super().__init__(operands=(input, dynamicSizes), result_types=(result_type,))

verify_()

Source code in xdsl/dialects/tensor.py
718
719
720
721
722
def verify_(self):
    if self.result.type.get_shape().count(DYNAMIC_INDEX) != len(self.dynamicSizes):
        raise VerifyException(
            "number of dynamic sizes must equal number of unknown dimensions in result tensor"
        )