19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288 | class AffineParser(BaseParser):
_BINOP_PRECEDENCE = {
"+": 10,
"-": 10,
"*": 20,
"ceildiv": 20,
"floordiv": 20,
"mod": 20,
}
def __init__(self, state: ParserState[MLIRTokenKind]) -> None:
self._resume_from(state)
def _get_parse_optional_bare_id(
self, dims: list[str], syms: list[str]
) -> Callable[[], AffineExpr | None]:
def parse_optional_bare_id():
if (token := self._parse_optional_token(MLIRTokenKind.BARE_IDENT)) is None:
return
# Handle bare id
span = token.span
bare_id = span.text
if bare_id in dims:
return AffineExpr.dimension(dims.index(bare_id))
elif bare_id in syms:
return AffineExpr.symbol(syms.index(bare_id))
else:
raise ParseError(span, f"Identifier not in space {bare_id}")
return parse_optional_bare_id
def _parse_primary(
self, parse_optional_bare_id: Callable[[], AffineExpr | None]
) -> AffineExpr:
"""
primary ::= `(` affine-expr `)`
| bare-id
| integer-literal
| `-` primary
"""
if (bare_id := parse_optional_bare_id()) is not None:
return bare_id
current_token = self._consume_token()
match current_token.kind:
case MLIRTokenKind.L_PAREN:
# Handle parentheses
expr = self._parse_affine_expr(parse_optional_bare_id)
self._parse_token(MLIRTokenKind.R_PAREN, "Expected closing parenthesis")
return expr
case MLIRTokenKind.INTEGER_LIT:
# Handle integer literal
return AffineExpr.constant(
current_token.kind.get_int_value(current_token.span)
)
case MLIRTokenKind.MINUS:
# Handle negative primary
return -self._parse_primary(parse_optional_bare_id)
case _:
raise ParseError(current_token.span, "Expected primary expression")
def _get_token_precedence(self) -> int:
return self._BINOP_PRECEDENCE.get(self._current_token.text, -1)
def _create_binop_expr(
self, lhs: AffineExpr, rhs: AffineExpr, binop: MLIRToken
) -> AffineExpr:
match binop.text:
case "+":
return lhs + rhs
case "-":
return lhs - rhs
case "*":
return lhs * rhs
case "ceildiv":
return lhs.ceil_div(rhs)
case "floordiv":
return lhs // rhs
case "mod":
return lhs % rhs
case _:
raise ParseError(binop.span, f"Unknown binary operator {binop.text}")
def _parse_binop_rhs(
self,
lhs: AffineExpr,
prec: int,
parse_optional_bare_id: Callable[[], AffineExpr | None],
) -> AffineExpr:
while True:
tok_prec = self._get_token_precedence()
# This works even if the token does not exist, since -1 is returned.
if tok_prec < prec:
return lhs
# Get the binop
binop = self._consume_token()
# Parse the primary expression after the binary operator.
rhs = self._parse_primary(parse_optional_bare_id)
next_prec = self._get_token_precedence()
if tok_prec < next_prec:
# Increase the precision of the current operator to parse
# it before the next one in case they have same precedence.
rhs = self._parse_binop_rhs(rhs, tok_prec + 1, parse_optional_bare_id)
lhs = self._create_binop_expr(lhs, rhs, binop)
# TODO: Extend to semi-affine maps
def _parse_affine_expr(
self, parse_optional_bare_id: Callable[[], AffineExpr | None]
) -> AffineExpr:
"""
affine-expr ::= `(` affine-expr `)`
| `-`? integer-literal
| bare-id
| `-`affine-expr
| `-`? integer-literal `*` affine-expr
| affine-expr `ceildiv` integer-literal
| affine-expr `floordiv` integer-literal
| affine-expr `mod` integer-literal
| affine-expr `+` affine-expr
| affine-expr `-` affine-expr
"""
lhs = self._parse_primary(parse_optional_bare_id)
return self._parse_binop_rhs(lhs, 0, parse_optional_bare_id)
def _parse_multi_affine_expr(
self, parse_optional_bare_id: Callable[[], AffineExpr | None]
) -> list[AffineExpr]:
"""
multi-affine-expr ::= `(` `)`
| `(` affine-expr (`,` affine-expr)* `)`
"""
def parse_expr() -> AffineExpr:
return self._parse_affine_expr(parse_optional_bare_id)
return self.parse_comma_separated_list(self.Delimiter.PAREN, parse_expr)
# TODO: Extend to semi-affine maps; see https://github.com/xdslproject/xdsl/issues/1087
def _parse_affine_constraint(
self, parse_optional_bare_id: Callable[[], AffineExpr | None]
) -> AffineConstraintExpr:
"""
affine-expr ::= `(` affine-expr `)`
| `-`? integer-literal
| bare-id
| `-`affine-expr
| `-`? integer-literal `*` affine-expr
| affine-expr `ceildiv` integer-literal
| affine-expr `floordiv` integer-literal
| affine-expr `mod` integer-literal
| affine-expr `+` affine-expr
| affine-expr `-` affine-expr
"""
lhs = self._parse_affine_expr(parse_optional_bare_id)
op = self._consume_token().text + self._consume_token().text
if op not in set(k.value for k in AffineConstraintKind):
self.raise_error(
f"Expected one of {', '.join(f'`{k.value}`' for k in AffineConstraintKind)}, got {op}."
)
op = AffineConstraintKind(op)
rhs = self._parse_affine_expr(parse_optional_bare_id)
return AffineConstraintExpr(op, lhs, rhs)
def _parse_multi_affine_constaint(
self, parse_optional_bare_id: Callable[[], AffineExpr | None]
) -> list[AffineConstraintExpr]:
"""
multi-affine-expr ::= `(` `)`
| `(` affine-expr (`,` affine-expr)* `)`
"""
def parse_constraint() -> AffineConstraintExpr:
return self._parse_affine_constraint(parse_optional_bare_id)
return self.parse_comma_separated_list(self.Delimiter.PAREN, parse_constraint)
def _parse_affine_space(self) -> tuple[list[str], list[str]]:
"""
dims ::= `(` ssa-use-list? `)`
syms ::= `[` ssa-use-list? `]`
affine-space ::= dims syms?
"""
def parse_id() -> str:
return self._parse_token(
MLIRTokenKind.BARE_IDENT, "Expected identifier"
).text
# Parse dimensions
dims = self.parse_comma_separated_list(self.Delimiter.PAREN, parse_id)
# Parse optional symbols
if self._current_token.kind != MLIRTokenKind.L_SQUARE:
syms = []
else:
syms = self.parse_comma_separated_list(self.Delimiter.SQUARE, parse_id)
# TODO: Do not allow duplicate ids.
return dims, syms
def parse_affine_map(self) -> AffineMap:
"""
affine-map
::= affine-space `->` multi-affine-expr
"""
# Parse affine space
dims, syms = self._parse_affine_space()
# Parse : delimiter
self._parse_token(MLIRTokenKind.ARROW, "Expected `->`")
# Parse list of affine expressions
exprs = self._parse_multi_affine_expr(
self._get_parse_optional_bare_id(dims, syms)
)
# Create map and return.
return AffineMap(len(dims), len(syms), tuple(exprs))
def parse_affine_set(self) -> AffineSet:
"""
affine-map
::= affine-space `:` `(` (affine-constraint)* `)`
"""
# Parse affine space
dims, syms = self._parse_affine_space()
# Parse : delimiter
self._parse_token(MLIRTokenKind.COLON, "Expected `:`")
# Parse list of affine expressions
constraints = self._parse_multi_affine_constaint(
self._get_parse_optional_bare_id(dims, syms)
)
# Create map and return.
return AffineSet(len(dims), len(syms), tuple(constraints))
def _get_parse_optional_ssa_value(
self,
) -> tuple[Callable[[], AffineExpr | None], dict[str, int]]:
"""
Returns function to parse an affine symbol expr represented by an SSA value
identifier, and the dictionary mapping SSA value name to the corresponding
symbol index, populated by the function as it encounters new values.
"""
symbol_by_ssa_name: dict[str, int] = {}
def parse_optional_ssa_value() -> AffineExpr | None:
if (
ident_token := self._parse_optional_token(MLIRTokenKind.PERCENT_IDENT)
) is not None:
ident = ident_token.span.text
try:
symbol = symbol_by_ssa_name[ident]
except KeyError:
symbol = len(symbol_by_ssa_name)
symbol_by_ssa_name[ident] = symbol
return AffineExpr.symbol(symbol)
return parse_optional_ssa_value, symbol_by_ssa_name
def parse_affine_map_of_ssa_ids(self) -> tuple[AffineMap, Sequence[str]]:
"""
Parse an affine map where ssa values can be used inside the expressions.
```
`[` affine-expr (`,` affine-expr)* `]`
```
"""
parse_optional_bare_id, symbol_by_ssa_name = (
self._get_parse_optional_ssa_value()
)
exprs = self.parse_comma_separated_list(
self.Delimiter.SQUARE,
lambda: self._parse_affine_expr(parse_optional_bare_id),
)
syms = tuple(symbol_by_ssa_name)
return AffineMap(0, len(syms), tuple(exprs)), syms
|