Skip to content

Lower hls

lower_hls

LowerHLSStreamWrite dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
@dataclass
class LowerHLSStreamWrite(RewritePattern):
    def __init__(self, op: builtin.ModuleOp):
        self.module = op
        self.push_stencil_declaration = False
        self.push_duplicate_declaration = False

    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: HLSStreamWriteOp, rewriter: PatternRewriter, /):
        elem = op.element
        elem_type = op.element.type
        p_elem_type = LLVMPointerType()
        op.operands[0].type

        if "duplicate" in op.attributes:
            if not self.push_duplicate_declaration:
                push_func = func.FuncOp.external(
                    "llvm.fpga.fifo.push.duplicate", [elem_type, p_elem_type], []
                )

                self.module.body.block.add_op(push_func)
                self.push_duplicate_declaration = True

            gep = GEPOp(op.stream, [0, 0], pointee_type=elem_type)
            push_call = func.CallOp("llvm.fpga.fifo.push.duplicate", [elem, gep], [])

        else:
            if not self.push_stencil_declaration:
                push_func = func.FuncOp.external(
                    "llvm.fpga.fifo.push.stencil", [elem_type, p_elem_type], []
                )

                self.module.body.block.add_op(push_func)
                self.push_stencil_declaration = True

            gep = GEPOp(op.stream, [0, 0], pointee_type=elem_type)
            push_call = func.CallOp("llvm.fpga.fifo.push.stencil", [elem, gep], [])

        rewriter.replace_op(op, [gep, push_call])

module = op instance-attribute

push_stencil_declaration = False instance-attribute

push_duplicate_declaration = False instance-attribute

__init__(op: builtin.ModuleOp)

Source code in xdsl/transforms/experimental/lower_hls.py
45
46
47
48
def __init__(self, op: builtin.ModuleOp):
    self.module = op
    self.push_stencil_declaration = False
    self.push_duplicate_declaration = False

match_and_rewrite(op: HLSStreamWriteOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
@op_type_rewrite_pattern
def match_and_rewrite(self, op: HLSStreamWriteOp, rewriter: PatternRewriter, /):
    elem = op.element
    elem_type = op.element.type
    p_elem_type = LLVMPointerType()
    op.operands[0].type

    if "duplicate" in op.attributes:
        if not self.push_duplicate_declaration:
            push_func = func.FuncOp.external(
                "llvm.fpga.fifo.push.duplicate", [elem_type, p_elem_type], []
            )

            self.module.body.block.add_op(push_func)
            self.push_duplicate_declaration = True

        gep = GEPOp(op.stream, [0, 0], pointee_type=elem_type)
        push_call = func.CallOp("llvm.fpga.fifo.push.duplicate", [elem, gep], [])

    else:
        if not self.push_stencil_declaration:
            push_func = func.FuncOp.external(
                "llvm.fpga.fifo.push.stencil", [elem_type, p_elem_type], []
            )

            self.module.body.block.add_op(push_func)
            self.push_stencil_declaration = True

        gep = GEPOp(op.stream, [0, 0], pointee_type=elem_type)
        push_call = func.CallOp("llvm.fpga.fifo.push.stencil", [elem, gep], [])

    rewriter.replace_op(op, [gep, push_call])

LowerHLSStreamRead dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
@dataclass
class LowerHLSStreamRead(RewritePattern):
    def __init__(self, op: builtin.ModuleOp):
        self.module = op
        self.pop_stencil_declaration = False
        self.pop_write_data_declaration = False

    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: HLSStreamReadOp, rewriter: PatternRewriter, /):
        # The stream is an alloca of a struct of the hls_elem_type. hls_elem_type must be extracted from the struct
        assert isinstance(op.operands[0].type, HLSStreamType)
        p_struct_hls_elem_type = op.operands[0].type

        assert isinstance(p_struct_hls_elem_type.element_type, llvm.LLVMStructType)

        hls_elem_type = p_struct_hls_elem_type.element_type.types.data[0]

        p_hls_elem_type = LLVMPointerType()

        if "write_data" in op.attributes:
            if not self.pop_write_data_declaration:
                pop_func = func.FuncOp.external(
                    "llvm.fpga.fifo.pop.write_data",
                    [p_hls_elem_type],
                    [op.res.type],
                )

                self.module.body.block.add_op(pop_func)

                self.pop_write_data_declaration = True
            size = ConstantOp.from_int_and_width(1, i32)

            alloca = AllocaOp(size, hls_elem_type)

            gep = GEPOp(op.stream, [0, 0], pointee_type=hls_elem_type)

            pop_call = func.CallOp(
                "llvm.fpga.fifo.pop.write_data", [gep], [op.res.type]
            )

        else:
            if not self.pop_stencil_declaration:
                pop_func = func.FuncOp.external(
                    "llvm.fpga.fifo.pop.stencil",
                    [p_hls_elem_type],
                    [op.res.type],
                )

                self.module.body.block.add_op(pop_func)

                self.pop_stencil_declaration = True
            size = ConstantOp.from_int_and_width(1, i32)

            alloca = AllocaOp(size, hls_elem_type)

            gep = GEPOp(op.stream, [0, 0], pointee_type=hls_elem_type)

            pop_call = func.CallOp("llvm.fpga.fifo.pop.stencil", [gep], [op.res.type])

        current_parent = op.parent_op()
        while not isinstance(current_parent, FuncOp):
            assert isinstance(current_parent, Operation)
            current_parent = current_parent.parent_op()

        store = StoreOp(pop_call, alloca)
        load = LoadOp(alloca, result_type=hls_elem_type)

        # rewriter.insert_op_at_start(alloca, current_parent.body.blocks[0])
        current_parent.body.blocks[0].insert_op_before(
            alloca, typing.cast(Operation, current_parent.body.blocks[0].first_op)
        )
        current_parent.body.blocks[0].insert_op_before(
            size, typing.cast(Operation, current_parent.body.blocks[0].first_op)
        )

        # rewriter.replace_op(op, [size, alloca, gep, pop_call, store, load])
        rewriter.replace_op(op, [gep, pop_call, store, load])

module = op instance-attribute

pop_stencil_declaration = False instance-attribute

pop_write_data_declaration = False instance-attribute

__init__(op: builtin.ModuleOp)

Source code in xdsl/transforms/experimental/lower_hls.py
86
87
88
89
def __init__(self, op: builtin.ModuleOp):
    self.module = op
    self.pop_stencil_declaration = False
    self.pop_write_data_declaration = False

match_and_rewrite(op: HLSStreamReadOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
@op_type_rewrite_pattern
def match_and_rewrite(self, op: HLSStreamReadOp, rewriter: PatternRewriter, /):
    # The stream is an alloca of a struct of the hls_elem_type. hls_elem_type must be extracted from the struct
    assert isinstance(op.operands[0].type, HLSStreamType)
    p_struct_hls_elem_type = op.operands[0].type

    assert isinstance(p_struct_hls_elem_type.element_type, llvm.LLVMStructType)

    hls_elem_type = p_struct_hls_elem_type.element_type.types.data[0]

    p_hls_elem_type = LLVMPointerType()

    if "write_data" in op.attributes:
        if not self.pop_write_data_declaration:
            pop_func = func.FuncOp.external(
                "llvm.fpga.fifo.pop.write_data",
                [p_hls_elem_type],
                [op.res.type],
            )

            self.module.body.block.add_op(pop_func)

            self.pop_write_data_declaration = True
        size = ConstantOp.from_int_and_width(1, i32)

        alloca = AllocaOp(size, hls_elem_type)

        gep = GEPOp(op.stream, [0, 0], pointee_type=hls_elem_type)

        pop_call = func.CallOp(
            "llvm.fpga.fifo.pop.write_data", [gep], [op.res.type]
        )

    else:
        if not self.pop_stencil_declaration:
            pop_func = func.FuncOp.external(
                "llvm.fpga.fifo.pop.stencil",
                [p_hls_elem_type],
                [op.res.type],
            )

            self.module.body.block.add_op(pop_func)

            self.pop_stencil_declaration = True
        size = ConstantOp.from_int_and_width(1, i32)

        alloca = AllocaOp(size, hls_elem_type)

        gep = GEPOp(op.stream, [0, 0], pointee_type=hls_elem_type)

        pop_call = func.CallOp("llvm.fpga.fifo.pop.stencil", [gep], [op.res.type])

    current_parent = op.parent_op()
    while not isinstance(current_parent, FuncOp):
        assert isinstance(current_parent, Operation)
        current_parent = current_parent.parent_op()

    store = StoreOp(pop_call, alloca)
    load = LoadOp(alloca, result_type=hls_elem_type)

    # rewriter.insert_op_at_start(alloca, current_parent.body.blocks[0])
    current_parent.body.blocks[0].insert_op_before(
        alloca, typing.cast(Operation, current_parent.body.blocks[0].first_op)
    )
    current_parent.body.blocks[0].insert_op_before(
        size, typing.cast(Operation, current_parent.body.blocks[0].first_op)
    )

    # rewriter.replace_op(op, [size, alloca, gep, pop_call, store, load])
    rewriter.replace_op(op, [gep, pop_call, store, load])

LowerHLSStreamToAlloca dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
@dataclass
class LowerHLSStreamToAlloca(RewritePattern):
    def __init__(self, op: builtin.ModuleOp):
        self.module = op
        self.set_stream_depth_declaration = False
        self.set_stream_size_qualifier_double_declaration = False
        self.set_stream_size_qualifier_stencil_declaration = False

    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: HLSStreamOp, rewriter: PatternRewriter, /):
        # We need to make sure that the type gets updated in the operations using the stream
        uses: list[Use] = []

        for use in op.result.uses:
            uses.append(use)

        hls_elem_type = op.elem_type
        stream_type = LLVMPointerType()

        if not self.set_stream_depth_declaration:
            stream_depth_func = llvm.FuncOp(
                "llvm.fpga.set.stream.depth",
                llvm.LLVMFunctionType([], is_variadic=True),
                linkage=llvm.LinkageAttr("external"),
            )
            self.module.body.block.add_op(stream_depth_func)

            self.set_stream_depth_declaration = True

        # As can be seen on the compiled synthetic stream benchmark of the FPL paper
        size = ConstantOp.from_int_and_width(1, i32)
        alloca = AllocaOp(size, LLVMStructType.from_type_list([hls_elem_type]))
        gep = GEPOp(alloca, [0, 0], pointee_type=hls_elem_type)
        depth = ConstantOp.from_int_and_width(0, i32)
        depth_call = llvm.CallOp("llvm.fpga.set.stream.depth", gep, depth)

        stream_size = ConstantOp.from_int_and_width(32, i32)

        if hls_elem_type == f64:
            stream_size_call = CallOp(
                "stream_size_qualifier_double", [op, stream_size], []
            )
            if not self.set_stream_size_qualifier_double_declaration:
                stream_size_qualifier_double = FuncOp.external(
                    "stream_size_qualifier_double", [stream_type, i32], []
                )
                self.module.body.block.add_op(stream_size_qualifier_double)
                self.set_stream_size_qualifier_double_declaration = True
        else:
            stream_size_call = CallOp(
                "stream_size_qualifier_stencil", [op, stream_size], []
            )
            if not self.set_stream_size_qualifier_stencil_declaration:
                stream_size_qualifier_double = FuncOp.external(
                    "stream_size_qualifier_stencil", [stream_type, i32], []
                )
                self.module.body.block.add_op(stream_size_qualifier_double)
                self.set_stream_size_qualifier_stencil_declaration = True

        start_df_call = CallOp("_start_df_call", [], [i32])
        end_df_call = CallOp("_end_df_call", [], [])

        rewriter.insert_op(
            [
                start_df_call,
                depth,
                gep,
                depth_call,
                stream_size,
                stream_size_call,
                end_df_call,
            ],
            InsertPoint.after(op),
        )
        rewriter.replace_op(op, [size, alloca])

        for use in uses:
            rewriter.replace_value_with_new_type(
                use.operation.operands[use.index], alloca.res.type
            )

            # This is specially important when the stream is an argument of ApplyOp
            if use.operation.regions:
                block_arg = use.operation.regions[0].block.args[use.index]
                rewriter.replace_value_with_new_type(block_arg, alloca.res.type)

module = op instance-attribute

set_stream_depth_declaration = False instance-attribute

set_stream_size_qualifier_double_declaration = False instance-attribute

set_stream_size_qualifier_stencil_declaration = False instance-attribute

__init__(op: builtin.ModuleOp)

Source code in xdsl/transforms/experimental/lower_hls.py
165
166
167
168
169
def __init__(self, op: builtin.ModuleOp):
    self.module = op
    self.set_stream_depth_declaration = False
    self.set_stream_size_qualifier_double_declaration = False
    self.set_stream_size_qualifier_stencil_declaration = False

match_and_rewrite(op: HLSStreamOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
@op_type_rewrite_pattern
def match_and_rewrite(self, op: HLSStreamOp, rewriter: PatternRewriter, /):
    # We need to make sure that the type gets updated in the operations using the stream
    uses: list[Use] = []

    for use in op.result.uses:
        uses.append(use)

    hls_elem_type = op.elem_type
    stream_type = LLVMPointerType()

    if not self.set_stream_depth_declaration:
        stream_depth_func = llvm.FuncOp(
            "llvm.fpga.set.stream.depth",
            llvm.LLVMFunctionType([], is_variadic=True),
            linkage=llvm.LinkageAttr("external"),
        )
        self.module.body.block.add_op(stream_depth_func)

        self.set_stream_depth_declaration = True

    # As can be seen on the compiled synthetic stream benchmark of the FPL paper
    size = ConstantOp.from_int_and_width(1, i32)
    alloca = AllocaOp(size, LLVMStructType.from_type_list([hls_elem_type]))
    gep = GEPOp(alloca, [0, 0], pointee_type=hls_elem_type)
    depth = ConstantOp.from_int_and_width(0, i32)
    depth_call = llvm.CallOp("llvm.fpga.set.stream.depth", gep, depth)

    stream_size = ConstantOp.from_int_and_width(32, i32)

    if hls_elem_type == f64:
        stream_size_call = CallOp(
            "stream_size_qualifier_double", [op, stream_size], []
        )
        if not self.set_stream_size_qualifier_double_declaration:
            stream_size_qualifier_double = FuncOp.external(
                "stream_size_qualifier_double", [stream_type, i32], []
            )
            self.module.body.block.add_op(stream_size_qualifier_double)
            self.set_stream_size_qualifier_double_declaration = True
    else:
        stream_size_call = CallOp(
            "stream_size_qualifier_stencil", [op, stream_size], []
        )
        if not self.set_stream_size_qualifier_stencil_declaration:
            stream_size_qualifier_double = FuncOp.external(
                "stream_size_qualifier_stencil", [stream_type, i32], []
            )
            self.module.body.block.add_op(stream_size_qualifier_double)
            self.set_stream_size_qualifier_stencil_declaration = True

    start_df_call = CallOp("_start_df_call", [], [i32])
    end_df_call = CallOp("_end_df_call", [], [])

    rewriter.insert_op(
        [
            start_df_call,
            depth,
            gep,
            depth_call,
            stream_size,
            stream_size_call,
            end_df_call,
        ],
        InsertPoint.after(op),
    )
    rewriter.replace_op(op, [size, alloca])

    for use in uses:
        rewriter.replace_value_with_new_type(
            use.operation.operands[use.index], alloca.res.type
        )

        # This is specially important when the stream is an argument of ApplyOp
        if use.operation.regions:
            block_arg = use.operation.regions[0].block.args[use.index]
            rewriter.replace_value_with_new_type(block_arg, alloca.res.type)

PragmaPipelineToFunc dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
@dataclass
class PragmaPipelineToFunc(RewritePattern):
    def __init__(self, op: builtin.ModuleOp):
        self.module = op
        self.declared_pipeline_names: set[str] = set()

    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: PragmaPipelineOp, rewriter: PatternRewriter, /):
        # TODO: can we retrieve data directly without having to go through IntegerAttr -> IntAttr?
        # ii : i32 = op.ii.owner.value.value.data
        ii = cast(Any, op.ii.owner).value.value.data

        ret1 = ReturnOp()
        block1 = Block(arg_types=[])
        block1.add_ops([ret1])
        Region(block1)

        pipeline_func_name = f"_pipeline_{ii}_"
        func1 = FuncOp.external(pipeline_func_name, [], [])

        call1 = CallOp(func1.sym_name.data, [], [])

        if pipeline_func_name not in self.declared_pipeline_names:
            self.module.body.block.add_op(func1)
            self.declared_pipeline_names.add(pipeline_func_name)

        rewriter.replace_op(op, call1)

module = op instance-attribute

declared_pipeline_names: set[str] = set() instance-attribute

__init__(op: builtin.ModuleOp)

Source code in xdsl/transforms/experimental/lower_hls.py
252
253
254
def __init__(self, op: builtin.ModuleOp):
    self.module = op
    self.declared_pipeline_names: set[str] = set()

match_and_rewrite(op: PragmaPipelineOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
@op_type_rewrite_pattern
def match_and_rewrite(self, op: PragmaPipelineOp, rewriter: PatternRewriter, /):
    # TODO: can we retrieve data directly without having to go through IntegerAttr -> IntAttr?
    # ii : i32 = op.ii.owner.value.value.data
    ii = cast(Any, op.ii.owner).value.value.data

    ret1 = ReturnOp()
    block1 = Block(arg_types=[])
    block1.add_ops([ret1])
    Region(block1)

    pipeline_func_name = f"_pipeline_{ii}_"
    func1 = FuncOp.external(pipeline_func_name, [], [])

    call1 = CallOp(func1.sym_name.data, [], [])

    if pipeline_func_name not in self.declared_pipeline_names:
        self.module.body.block.add_op(func1)
        self.declared_pipeline_names.add(pipeline_func_name)

    rewriter.replace_op(op, call1)

PragmaUnrollToFunc dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
@dataclass
class PragmaUnrollToFunc(RewritePattern):
    def __init__(self, op: builtin.ModuleOp):
        self.module = op

    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: PragmaUnrollOp, rewriter: PatternRewriter, /):
        # TODO: can we retrieve data directly without having to go through IntegerAttr -> IntAttr?
        factor = cast(Any, op.factor.owner).value.value.data

        ret1 = ReturnOp()
        block1 = Block(arg_types=[])
        block1.add_ops([ret1])
        region1 = Region(block1)
        func1 = FuncOp.from_region(f"_unroll_{factor}_", [], [], region1)

        call1 = CallOp(func1.sym_name.data, [], [])

        self.module.body.block.add_op(func1)

        rewriter.replace_op(op, call1)

module = op instance-attribute

__init__(op: builtin.ModuleOp)

Source code in xdsl/transforms/experimental/lower_hls.py
281
282
def __init__(self, op: builtin.ModuleOp):
    self.module = op

match_and_rewrite(op: PragmaUnrollOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
@op_type_rewrite_pattern
def match_and_rewrite(self, op: PragmaUnrollOp, rewriter: PatternRewriter, /):
    # TODO: can we retrieve data directly without having to go through IntegerAttr -> IntAttr?
    factor = cast(Any, op.factor.owner).value.value.data

    ret1 = ReturnOp()
    block1 = Block(arg_types=[])
    block1.add_ops([ret1])
    region1 = Region(block1)
    func1 = FuncOp.from_region(f"_unroll_{factor}_", [], [], region1)

    call1 = CallOp(func1.sym_name.data, [], [])

    self.module.body.block.add_op(func1)

    rewriter.replace_op(op, call1)

SCFParallelToHLSPipelinedFor dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@dataclass
class SCFParallelToHLSPipelinedFor(RewritePattern):
    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: ParallelOp, rewriter: PatternRewriter, /):
        ii = ConstantOp.from_int_and_width(1, i32)
        hls_pipeline_op: Operation = PragmaPipelineOp(ii)

        lb: VarOperand = op.lowerBound
        ub: VarOperand = op.upperBound
        step: VarOperand = op.step
        res: VarOpResult = op.res

        for i in range(len(lb)):
            cast(OpResult, lb[i]).op.detach()
            cast(OpResult, ub[i]).op.detach()
            cast(OpResult, step[i]).op.detach()

        # We generate a For loop for each induction variable in the Parallel loop.
        # We start by wrapping the parallel block in a region for the For loop and keep
        # wrapping in for loops until we have exhausted the induction variables
        parallel_block = op.body.detach_block(0)

        if res:
            parallel_block.insert_arg(res[0].type, 1)
            cast(Operation, parallel_block.last_op).detach()
            yieldop = YieldOp(res[0].op)
            parallel_block.add_op(yieldop)

        for_region = Region([parallel_block])

        for i in range(len(lb) - 1):
            for_region.block.erase_arg(for_region.block.args[i])

        if res:
            for_op = ForOp(lb[-1], ub[-1], step[-1], [res[0].op], for_region)
        else:
            for_op = ForOp(lb[-1], ub[-1], step[-1], [], for_region)

        for i in range(len(lb) - 2, -1, -1):
            for_region = Region(Block([for_op]))

            for_region.block.insert_arg(IndexType(), 0)

            for_region.block.insert_op_before(
                cast(OpResult, lb[i + 1]).op, cast(Operation, for_region.block.first_op)
            )
            for_region.block.insert_op_after(
                cast(OpResult, ub[i + 1]).op, cast(OpResult, lb[i + 1]).op
            )
            for_region.block.insert_op_after(
                cast(OpResult, step[i + 1]).op, cast(OpResult, ub[i + 1]).op
            )
            yieldop = YieldOp()
            for_region.block.add_op(yieldop)
            for_op = ForOp(lb[i], ub[i], step[i], [], for_region)

        for_region.block.insert_op_before(
            hls_pipeline_op, cast(Operation, for_region.block.first_op)
        )
        for_region.block.insert_op_after(ii, cast(Operation, for_region.block.first_op))

        cast(Block, op.parent_block()).insert_op_before(
            cast(OpResult, lb[0]).op,
            cast(Operation, cast(Block, op.parent_block()).first_op),
        )
        cast(Block, op.parent_block()).insert_op_after(
            cast(OpResult, ub[0]).op, cast(OpResult, lb[0]).op
        )
        cast(Block, op.parent_block()).insert_op_after(
            cast(OpResult, step[0]).op, cast(OpResult, ub[0]).op
        )

        rewriter.replace_op(op, [for_op])

__init__() -> None

match_and_rewrite(op: ParallelOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@op_type_rewrite_pattern
def match_and_rewrite(self, op: ParallelOp, rewriter: PatternRewriter, /):
    ii = ConstantOp.from_int_and_width(1, i32)
    hls_pipeline_op: Operation = PragmaPipelineOp(ii)

    lb: VarOperand = op.lowerBound
    ub: VarOperand = op.upperBound
    step: VarOperand = op.step
    res: VarOpResult = op.res

    for i in range(len(lb)):
        cast(OpResult, lb[i]).op.detach()
        cast(OpResult, ub[i]).op.detach()
        cast(OpResult, step[i]).op.detach()

    # We generate a For loop for each induction variable in the Parallel loop.
    # We start by wrapping the parallel block in a region for the For loop and keep
    # wrapping in for loops until we have exhausted the induction variables
    parallel_block = op.body.detach_block(0)

    if res:
        parallel_block.insert_arg(res[0].type, 1)
        cast(Operation, parallel_block.last_op).detach()
        yieldop = YieldOp(res[0].op)
        parallel_block.add_op(yieldop)

    for_region = Region([parallel_block])

    for i in range(len(lb) - 1):
        for_region.block.erase_arg(for_region.block.args[i])

    if res:
        for_op = ForOp(lb[-1], ub[-1], step[-1], [res[0].op], for_region)
    else:
        for_op = ForOp(lb[-1], ub[-1], step[-1], [], for_region)

    for i in range(len(lb) - 2, -1, -1):
        for_region = Region(Block([for_op]))

        for_region.block.insert_arg(IndexType(), 0)

        for_region.block.insert_op_before(
            cast(OpResult, lb[i + 1]).op, cast(Operation, for_region.block.first_op)
        )
        for_region.block.insert_op_after(
            cast(OpResult, ub[i + 1]).op, cast(OpResult, lb[i + 1]).op
        )
        for_region.block.insert_op_after(
            cast(OpResult, step[i + 1]).op, cast(OpResult, ub[i + 1]).op
        )
        yieldop = YieldOp()
        for_region.block.add_op(yieldop)
        for_op = ForOp(lb[i], ub[i], step[i], [], for_region)

    for_region.block.insert_op_before(
        hls_pipeline_op, cast(Operation, for_region.block.first_op)
    )
    for_region.block.insert_op_after(ii, cast(Operation, for_region.block.first_op))

    cast(Block, op.parent_block()).insert_op_before(
        cast(OpResult, lb[0]).op,
        cast(Operation, cast(Block, op.parent_block()).first_op),
    )
    cast(Block, op.parent_block()).insert_op_after(
        cast(OpResult, ub[0]).op, cast(OpResult, lb[0]).op
    )
    cast(Block, op.parent_block()).insert_op_after(
        cast(OpResult, step[0]).op, cast(OpResult, ub[0]).op
    )

    rewriter.replace_op(op, [for_op])

LowerDataflow dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
@dataclass
class LowerDataflow(RewritePattern):
    module: builtin.ModuleOp
    declared_df_functions: bool = False

    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: PragmaDataflowOp, rewriter: PatternRewriter, /):
        if not self.declared_df_functions:
            start_df_func = FuncOp.external("_start_df_call", [], [i32])
            end_df_func = FuncOp.external("_end_df_call", [], [])

            self.module.body.block.add_op(start_df_func)
            self.module.body.block.add_op(end_df_func)

            self.declared_df_functions = True

        start_df_call = CallOp("_start_df_call", [], [i32])
        end_df_call = CallOp("_end_df_call", [], [])

        rewriter.insert_op(start_df_call)
        rewriter.insert_op(end_df_call, InsertPoint.after(op))

        dataflow_ops = [
            op for op in op.body.block.ops if not isinstance(op, HLSYieldOp)
        ]
        for df_op in reversed(dataflow_ops):
            df_op.detach()
            rewriter.insert_op(df_op, InsertPoint.after(op))

        rewriter.erase_op(op)

module: builtin.ModuleOp instance-attribute

declared_df_functions: bool = False class-attribute instance-attribute

__init__(module: builtin.ModuleOp, declared_df_functions: bool = False) -> None

match_and_rewrite(op: PragmaDataflowOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
@op_type_rewrite_pattern
def match_and_rewrite(self, op: PragmaDataflowOp, rewriter: PatternRewriter, /):
    if not self.declared_df_functions:
        start_df_func = FuncOp.external("_start_df_call", [], [i32])
        end_df_func = FuncOp.external("_end_df_call", [], [])

        self.module.body.block.add_op(start_df_func)
        self.module.body.block.add_op(end_df_func)

        self.declared_df_functions = True

    start_df_call = CallOp("_start_df_call", [], [i32])
    end_df_call = CallOp("_end_df_call", [], [])

    rewriter.insert_op(start_df_call)
    rewriter.insert_op(end_df_call, InsertPoint.after(op))

    dataflow_ops = [
        op for op in op.body.block.ops if not isinstance(op, HLSYieldOp)
    ]
    for df_op in reversed(dataflow_ops):
        df_op.detach()
        rewriter.insert_op(df_op, InsertPoint.after(op))

    rewriter.erase_op(op)

GetHLSStreamInDataflow dataclass

Bases: RewritePattern

Source code in xdsl/transforms/experimental/lower_hls.py
476
477
478
479
480
481
482
483
484
485
486
487
488
489
@dataclass
class GetHLSStreamInDataflow(RewritePattern):
    @op_type_rewrite_pattern
    def match_and_rewrite(self, op: HLSStreamOp, rewriter: PatternRewriter, /):
        hls_yield = HLSYieldOp.get()

        @Builder.region
        def empty_region(builder: Builder):
            builder.insert(hls_yield)

        dataflow = PragmaDataflowOp(empty_region)
        rewriter.insert_op(dataflow)
        op.detach()
        dataflow.body.blocks[0].insert_op_before(op, hls_yield)

__init__() -> None

match_and_rewrite(op: HLSStreamOp, rewriter: PatternRewriter)

Source code in xdsl/transforms/experimental/lower_hls.py
478
479
480
481
482
483
484
485
486
487
488
489
@op_type_rewrite_pattern
def match_and_rewrite(self, op: HLSStreamOp, rewriter: PatternRewriter, /):
    hls_yield = HLSYieldOp.get()

    @Builder.region
    def empty_region(builder: Builder):
        builder.insert(hls_yield)

    dataflow = PragmaDataflowOp(empty_region)
    rewriter.insert_op(dataflow)
    op.detach()
    dataflow.body.blocks[0].insert_op_before(op, hls_yield)

LowerHLSPass dataclass

Bases: ModulePass

Source code in xdsl/transforms/experimental/lower_hls.py
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
@dataclass(frozen=True)
class LowerHLSPass(ModulePass):
    name = "lower-hls"

    def apply(self, ctx: Context, op: builtin.ModuleOp) -> None:
        def gen_greedy_walkers(
            passes: list[RewritePattern],
        ) -> list[PatternRewriteWalker]:
            # Creates a greedy walker for each pass, so that they can be run sequentially even after
            # matching
            walkers: list[PatternRewriteWalker] = []

            for i in range(len(passes)):
                walkers.append(
                    PatternRewriteWalker(
                        GreedyRewritePatternApplier([passes[i]]), apply_recursively=True
                    )
                )

            return walkers

        PatternRewriteWalker(
            GreedyRewritePatternApplier([GetHLSStreamInDataflow()]),
            apply_recursively=False,
            walk_reverse=False,
        )
        # hlsstream_df.rewrite_module(op)

        walkers = gen_greedy_walkers(
            [
                # SCFParallelToHLSPipelinedFor(),
                PragmaPipelineToFunc(op),
                PragmaUnrollToFunc(op),
                # PragmaDataflowToFunc(op),
                LowerDataflow(op),
                LowerHLSStreamToAlloca(op),
                LowerHLSStreamRead(op),
                LowerHLSStreamWrite(op),
                # LowerHLSExtractStencilValue(),
            ]
        )

        for walker in walkers:
            walker.rewrite_module(op)

name = 'lower-hls' class-attribute instance-attribute

__init__() -> None

apply(ctx: Context, op: builtin.ModuleOp) -> None

Source code in xdsl/transforms/experimental/lower_hls.py
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
def apply(self, ctx: Context, op: builtin.ModuleOp) -> None:
    def gen_greedy_walkers(
        passes: list[RewritePattern],
    ) -> list[PatternRewriteWalker]:
        # Creates a greedy walker for each pass, so that they can be run sequentially even after
        # matching
        walkers: list[PatternRewriteWalker] = []

        for i in range(len(passes)):
            walkers.append(
                PatternRewriteWalker(
                    GreedyRewritePatternApplier([passes[i]]), apply_recursively=True
                )
            )

        return walkers

    PatternRewriteWalker(
        GreedyRewritePatternApplier([GetHLSStreamInDataflow()]),
        apply_recursively=False,
        walk_reverse=False,
    )
    # hlsstream_df.rewrite_module(op)

    walkers = gen_greedy_walkers(
        [
            # SCFParallelToHLSPipelinedFor(),
            PragmaPipelineToFunc(op),
            PragmaUnrollToFunc(op),
            # PragmaDataflowToFunc(op),
            LowerDataflow(op),
            LowerHLSStreamToAlloca(op),
            LowerHLSStreamRead(op),
            LowerHLSStreamWrite(op),
            # LowerHLSExtractStencilValue(),
        ]
    )

    for walker in walkers:
        walker.rewrite_module(op)